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REAL-TIME 4D TUMOR TRACKING AND MODELING FROM INTERNAL
AND EXTERNAL FIDUCIALSIN FLUOROSCOPY

JOHANNA M. BREWER

Abstract

Fluoroscopy is currently used in treatment planning forguas undergoing radiation ther-
apy for lung and abdominal tumors. Radiation oncologisték $e maximize the radiation
the tumor receives, and minimize the amount delivered tastimeounding tissues, a task
made difficult by movement caused by the breathing of theepatiA model of the tumor
motion could greatly improve dose calculation and deliv@iigere exists a system which
directly estimates the location of the tumor, but this sysie very costly and not widely
deployed. In this thesis a model which can be derived usigsg $pecialized equipment
is presented. First, a method of tracking the two-dimeraig2D) motion of internal
markers (surgical clips) placed around the tumor is preskahd examined. A ground
truth is established by visual inspection of 10 data setspatients to evaluate the tracker.
The root mean squared error in estimating 2D marker positias 0.47 mm on average.
Using two orthogonal sequentially obtained fluoroscopiagm sequences, a method for
calculating a model of the average or maximum three-dinoera$i(3D) motion of the clips
is presented, examined, and compared to the direct estimsyistem. On average, the
error was 3.0 mm for four pairs of trajectories. If imaging@ssible during treatment, this

modeled motion can be used for beam-guided radiation, wibey the modeled motion

iv



can be correlated to a set of external markers for use inregepy gating.
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Chapter 1

I ntroduction

Despite all of the advances of modern science the treatnieanaer is still an open prob-
lem. According to the Cancer Statistics 2004 report fromAimerican Cancer Society [6],
this year about 563,700 Americans are expected to die ofecafitis report also states
that the 5-year survival rates for lung/bronchial and paatc cancer during 1974-1976
were 12% and 3% respectively. Between 1992-1999 the 5-yemival rates were only
15% and 4% respectively. For other forms of cancer the meaease in the 5-year rate
of survival was 13 percent points. Lung/bronchial and peatic cancer have the lowest
5-year survival rates and these rates have been the slawiesptove. One reason is that
these types of cancer are very difficult to treat. The tumoessarrounded by critical
structures, and move considerably when the patient breaffileus, knowledge of tumor

location as it moves during breathing is integral to radiatherapy.

Fluoroscopy and computed tomography (CT) scans are typioakd in the pre-
treatment planning phase to discern the location of the tuflooroscopy is an imaging
technique in which X-rays continually strike a fluoresceam@l that is coupled to a video
monitor. In a fluoroscopic image tumors lack sufficient castivith the surrounding tissue,
so in preparation for treatment metal clips are often imjgdraround the tumor. Since
these clips are radio-opaque they are visible in both fllumoeis images and CT scans. In

fluoroscopy, they provide a way to observe the tumor as it@bsuposition due to various
1



rigid and non-rigid body movements.

During the treatment phase patients receive a dose of mgtgg X-ray from a linear
accelerator (linac), an example of which (the Integratedi®berapy Imaging System
(IRIS) of Massachusetts General Hospital) is shown in Fifj. IThe radiation beam is
emitted by a part of the linac called the gantry which has thiitya to rotate around
the patient, and the patient lies on a movable couch undértiea gantry. For lung and
abdominal tumors, radiotherapy is particularly compkcHby tumor motion due to patient
breathing. In order to compensate for this, the clinicajeanvolume (CTV), the tumor
itself, is often expanded by a margin to form the planninggéwolume (PTV), the volume
of the patient which will be irradiated. This is done so thnet tumor will receive sufficient

dose but it leads to undesirable radiation of healthy tissmeounding the tumor.

Figure 1.1: Example of a linear accelerator. Photo credasséchusetts General Hospital.

Usually the linac is accompanied by a fluoroscopic imagirejesy for pre-treatment



simulation. When this is the case it is usually a single-panager, meaning an image
sequence can only be taken from one viewpoint at a time. Sorae machines have
multiple-panel imaging systems (up to four panels). Witsth machines it is usually the
case that the imaging system can be used not only for pravtesd simulation, but for
online imaging during treatment as well. The linac shownim E.1 is one such machine,
and Fig. 1.2 shows a diagram of the setup of a machine with goam@l imaging system.
Additionally, linac machines are also outfitted with a lagkgnment system to reposition
the patients in the same way during all sessions. Althouglpserror is a possibility, we
will assume for the purposes of this thesis that the patgealigned in the linac machine in

the same way during every session.

Linac

Figure 1.2: Diagram of the front (on left) and side (on righigws of the setup of a
linac machine with a two-panel imaging system. Diagram icrédassachusetts General
Hospital.

The fluoroscopic imaging system mounted on the linac macbareaid in more

precise irradiation of the patient’s tumor in several waysan be used for pre-treatment



simulation by radiation oncologists to visually observe kbcation of the patient’s tumor.
This information can be obtained while the patient is hajdirs or her breath to determine
parameters for breath-hold techniques [14, 39, 34, 27]sd@lbechniques assume that the
patient’s tumor is stationary when the patient is not briegthand that when the patient is
at a certain level of inspiration the tumor location will nsistently reproducible. During
treatment the patient is brought to the same level of inSpitand the tumor is irradiated
as if it were static. However, patients often cannot holdrtheeath due to the severity of

their illness.

The fluoroscopic imaging system can also be used in preategdtsimulation to ob-
serve how the motion of the patient’s tumor moves with resfmesome external indicator
of the breathing signal, such as lung air flow or a physicalkeraplaced on the patient’s
abdomen [23, 20, 36, 26, 8, 37]. A correlation between theionadf the tumor and
the external indicator can be established, and then usedgdireatment to infer tumor
position from the position of the external indicator. In erhtradiation therapy, when
the tumor is determined by observation of the external eidicto be within a specified
range of positions, the radiation beam is turned on. Whertuhmr moves out of this
range the beam is turned off. In gated therapy treatment lbi@@emes an issue because
the radiation beam is not always on, which could be consitareinefficient use of the
machine, and radiation oncologists would like to speed egtinent in order to attend to
as many patients as possible. Additionally, patient bregtiiaries over time and this can

cause the correlation between the motion of the externdtenanotion and the motion of



the tumor, which gated therapy relies on, to break down.

The linac machines which have fluoroscopic imaging systéaiscan be used during
treatment allow the tumor to be observed more directly wthke patient is being irradi-

ated [16, 25, 31, 32, 33, 30, 26]. However, these machinesostéy and very few exist.

The problem is then to devise a way to recover the positiorhefttmor volume
while the patient is breathing during treatment as acclyra® possible so that the PTV
can be reduced and more healthy tissue can be spared. This ttebe accomplished
for scenarios with varying technological capabilities.eTdontribution of this thesis is to
address the problem of tumor motion during radiation therag rigorous manner by (1)
formulating and analyzing a method for the tracking of fidionarkers in fluoroscopy in
2D, (2) formulating and analyzing a method to model the mrovbd the fiducials in 3D
when only 2D data is available, (3) analyzing the correfaidd the motion of internal
and external fiducial markers, and (4) proposing a methodddeinmotion of the tumor

volume, the CTV, itself.



Chapter 2

Related Wor k

The methods employed in the proposed system draw from aséilmrdy of related work
in the fields of medical imaging, radiation therapy, compuigion, computer graphics and
computer science and contribute to these areas. This eHagtaights the most relevant

work in each of those areas.

2.1 Radiation Therapy

There are many different techniques in radiation therapichiveeek to address the prob-
lems that tumor motion can cause during treatment. Radiatiwologists want to min-
imize the amount of radiation delivered to healthy tissumiad the tumor, while maxi-
mizing the radiation the tumor itself receives. The lattethese two takes precedence,
and in the case of tumors which move because of patient lmegatine simplest solution
is to expand the PTV to attempt to compensate for the motisseiially, a large enough
volume of the patient is irradiated so that the tumor rece®eough dose even if it is
moving. But the greater the range of tumor motion, the maeertaive method, which we
will call the standard approach, affects healthy tissueafy, it would be better to have
a way to deliver radiation only to the tumor. Intensity-mtded radiotherapy (IMRT)

is a technique used to deliver radiation conformally to ctax@3D target volumes while



sparing surrounding critical structures. However, Giergal. [11] have shown that tumor
motion in the abdomen could significantly degrade the pldroh@se-volume histogram
(DVH) of an IMRT plan. Thus, both objectives will be compraad. The following

methods have been developed with the goal of fulfilling bdijectives in mind.

2.1.1 Breath-hold Techniques

Breath-hold techniques seek to eliminate tumor motiorrelyti Deep Inspiration Breath-
Hold (DIBH) methods [14, 27] require the patient to achievie\el of deep inspiration
which is consistently reproducible. This is done througibaécoaching and the use of a
spirometer to monitor the patient’s level of respirationctide Breathing Control (ABC)
techniques [39, 34], on the other hand, immobilize patieaathing at a certain point in

the respiratory cycle via an occlusion valve.

By stopping the respiration at a reproducible level, the emoent of the tumor is
also halted. The patients can be imaged in a pre-treatmesepinder the breath-hold
conditions. Then, during treatment the position of the tumidl be known with greater
accuracy and the PTV can be reduced. Breath-hold technicasesshown to help decrease
the amount of dose delivered to healthy tissue. Howeverpdients undergoing this
treatment are often very ill and their ability to hold theirehth is greatly diminished.
Thus, it has been shown that these techniques are not aleasble for the patient [18].
Additionally, these techniques require a longer treatrtiere per patient than the standard

approach because the radiation beam is not always on.



2.1.2 Gated Therapy

Gating methods allow patients to breathe while receivinigation, and seek to compensate
for the motion by activating the radiation beam only whenttimaor is at a predetermined
position. This position can be detected in several ways. @e#hod involves indirectly
detecting the position by monitoring external markers. €kegernal markers have taken
the form of an infrared light-emitting diode [23] and now rme@ommonly an infrared re-
flective marker [20, 36, 8, 37] which the commercially aviaiéaVarian Real Time Position
Management (RPM) system makes use of. All of these studiglyzed the relationship
between the motion of the external marker and the motioneofitaphragm in fluoroscopy
and found a strong correlation. Vedam et al. [37] found tlaeelol on the respiration signal

produced by the RPM the motion of the diaphragm could be prediwithin 1 mm.

In addition to infrared light-emitting diodes Ozhasogludviurphy [26] also investi-
gated other external indicators of the breathing signaheig lead fiducials and lung air
flow, to indirectly determine tumor position. Their studyayzed the correlation between

these signals and the motion of internal fiducials implamete tumors.

It has been noted that a phase shift between external arrdahteotion may occur
under free breathing conditions [7, 20, 36, 37, 26]. Kinilef®/] showed that improving
the reproducibility of the amplitude and frequency of bingag via coaching is possible

and that this might increase the accuracy of gated therapy.

Position can also be directly detected by means of onlinedkampic imaging of



internal fiducial markers [32, 33, 30, 26]. Online imagingnmres the problems that
relying on a correlation between internal and external @gcan cause. However, the
technology required to image during treatment is only found few hospitals and the
imaging results in the undesired effect of an increase irtheunt of radiation the patient

receives.

Gated therapy in general is more time consuming than thelatdrapproach because
the radiation beam is not always on. Due to large patientrmel@t treatment clinics,
there is pressure to decrease the time of a treatment sebsiathis comes at the cost of
increasing the size of the gating window (the time when thenbés on) and thus more
healthy tissue is irradiated. This trade-off is difficulthalance and becomes even more

problematic in the typically longer sessions of IMRT.

2.1.3 Corredation

In most of the indirect gating methods correlation betweeereal and internal motion
was assumed. Although studies have attested to the cavretdtan external marker with
2D internal motion of the diaphragm [23, 20, 8, 37] and withi@f2rnal motion of fiducial

markers placed around or in the tumor [26, 12, 10], OzhasagtuMurphy [26] pointed

out many flaws in the assumptions and analysis techniqudseétstudies. By imaging
patients for 1-10 minutes they found complexities of theabrang pattern which would
not always be noticed when the imaging was done over theeshstandard time frame

of 30-60 seconds. Vedam et al. [36] described a method tyzsmand compensate for
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one of these problems, phase shift. However, the study dpri@zbasoglu and Murphy
showed that the phase shifts are usually transient or timeging. This is because the
elastically coupled components (e.g., organs, tissués;nal and external markers) of a
mechanical system which are subjected to a periodic drifance (e.g., breathing) and
are experiencing simple harmonic motion, cannot sustaixea fphase difference. Thus, a
method which does not adapt to changes in the breathingpattg., [36], could actually

lead to serious errors in estimating marker position.

Ozhasoglu and Murphy pointed out several other often owkdd issues. The place-
ment of the external marker is very important as correlatigth either the chest or the
abdomen yielded different results, and one cannot chagsgori which position would
yield the highest correlation or if any correlation existsall. Thus, longer periods of
observation are necessary. However, more observatiorgiing means more radiation is
being delivered to the patient and because of this there éx@meme reluctance to perform

such extended studies.

They also showed that tumor trajectories cannot be assunielsimple. This neces-
sitates measurement of the motion of the tumor in three déinas. In practice, this sort
of information is typically sparse. Since tumors cannoté&slg tracked in fluoroscopy the

internal fiducials are often tracked and taken to repres$entriotion of the tumor.

In summary, Ozhasoglu and Murphy found three significanblgrs with the current

state of gated therapy which utilizes external markers:

1. The observations of breathing motion that are used tcheegating con-
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ditions tend to last 1 min or less, which is not long enoughharacterize
respiration or establish that equilibrium conditions &xis

2. The tumor is never observed directly;

3. The gate-triggering algorithm does not accommodatestatienary aspects
of breathing motion, as for example time dependence of pbasenplitude

differences.

2.1.4 Image-guided Therapy

Image-guided radiation therapy seeks to address the pngbdé gating by moving the

radiation beam in synchronization with the tumor. It alloies shorter treatment session
times and, when coupled with online imaging, avoids theatation problem. The method
was first introduced in robotic radiosurgery [1, 28], an@tadopted for motion-adaptive

radiotherapy [16, 25, 31].

Motion-adaptive radiotherapy involves synchronously ity the radiation beam
using a dynamic multileaf collimator (DMLC) to follow the rtion of the tumor. Keall
et al. [16] showed that the dose delivered by motion adaptivay therapy (MAX-T) to
a moving target was equivalent to the dose a static targeivext from a static beam, and
so the concept is feasible. They propose that the leaf sequsmnbased upon the motion
of an external breathing signal. However, as Ozhasoglu angp© pointed out, this is
more complicated than it seems. Thus, the benefits of usiagerguided radiation might

be lost due to the correlation inaccuracies discussedqushyi. Keall et al. also point out
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the fact that studies usually assume that only the tumor igmgo In reality, however, the
surrounding organs and tissues move as well. This is vergiitapt because in planning
treatment it is critical to avoid delivering radiation tort@n structures, and if the position

of those structures changes they could be unintentioradigliated.

Neicu et al. [25] proposed a system called synchronized ngpaperture radiation
therapy (SMART). During treatment planning the tumor motia three dimensions is
measured and used to derive an average tumor trajectory) (KT the treatment phase the
tumor motion is monitored (either directly or indirectly)cthe beam moves according to
the ATT unless the tumor’s trajectory deviates from the ARiTwhich case the beam is
turned off. If the tumor’s trajectory resynchronizes witietATT, the beam is turned on
again. No attempt is made to change the leaf sequence oaheso this method is in
a way a combination of image-guided therapy and a more stigdtisd version of gating.
They acknowledge that this system is then reliant on thdaeigyiof the patient’s breathing
pattern in order to be usefully efficient. Again, accordiagdzhasoglu and Murphy this is
not a reasonable assumption. Furthermore, as with thensysteall et al. [16], using an

external marker might negate the benefits of image-guidedgy.

Sharp et al. [31] introduce a method which does not rely songty on such an
assumption. They propose to image the patient in three difbes during treatment
and to use this information along with prediction to guide eam. Because there is a
mechanical latency between imaging time and the movemehedieam, Neicu et al. [25]

relied on a predetermined form of predictability in the tutetrajectory. Sharp et al. [31]
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suggest doing the prediction during each session, and spatient’s breathing need not
be perfectly regular from day to day. This technique couldhmeight of as tailoring the
ATT to a breathing period of a few minutes. Sharp et al. [3Knaevledge that within a
given treatment session they do not update the predicticanpeters, and that the longer
the prediction is relied upon the more error will be introdddue to the non-stationary
nature of breathing. Overall their system worked well whas imaging rate was below
10 Hz and the latency of the beam was greater than 33 ms. Thearlaging rate helps
to reduce unwanted radiation delivered to the patient. Kewewvith all techniques that
require online imaging of the patient in three dimensioris important to keep in mind

that this technology is limited to only a few hospitals arddine world.

2.2 Tracking

Direct gating and image-guided methods which use onlireking have additional weak-
nesses. The robustness of tracking software, which is @npant importance, is often
insufficiently addressed. Furthermore, these systems gdtg on only one internal marker
to represent 3D tumor motion, but this is not adequate entmghcurately capture tumor
motion and cannot account for tumor deformation. Trackeg relatively new concept in
radiation therapy, but it has been extensively studiederotommunities. In this section
we will discuss how radiation therapy has utilized trackthgs far and highlight a few

relevant examples of tracking in computer vision and medisaging.
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2.2.1 Radiation Therapy

Several groups developed software to track the motion adidggghragm in fluoroscopy [20,
8, 37]. Ford et al. [8] only examined the motion of the diagmain the z-direction.
Although it is true that the motion in the-direction is typically the greatest, the motion
in the other two directions is often substantial and theee&hould not be over looked.
Tracking the motion of the diaphragm is clearly better thawitg no information about
how the internal structures of the patient are moving. Haxethe diaphragm is not a
perfect representative of tumor motion, and the tumor mestidied directly according to
Ozhasoglu and Murphy [26]. Additionally, the accuracy & thaphragm trackers used in
these studies was not reported. Furthermore, Berbeco[2} abncluded that 3D imaging
iIs necessary because of the irregularity and three dimeal#iyp of tumor trajectories, and
because the diaphragm is not tracked in 3D it cannot be aruatkegurrogate for tumor

motion.

Shirato et al. [32, 33] developed a system called the read-tumor tracking radio-
therapy (RTRT) system to track the 3D motion of a 2 mm gold rearikplanted in or
near a patient’s tumor at a rate of 30 Hz. They report an acgwal.5 mm. It should
be noted that this is the same system used by Seppenwolde[@&dJalNeicu et al. [25],
and Sharp et al. [31]. The ability to track the marker in 3Daséficial, however, only one
marker is used to represent tumor motion, and a single magkerot adequately represent
tumor rotation or deformation. To uniquely determine thegof a 3D object, at least

three points are necessary. Furthermore, determiningetatve pose between subsequent
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frames is problematic because the tumor is not a rigid obj€ke fiducials often do not
move as a rigid body, and according to Murphy [24], using atfofiducial so that the pose
problem is overdetermined greatly improves precisionsThbecause if only one fiducial

moves non-rigidly with respect to the group it can be ignored

In general, the main problem with these methods is that tekéd internal markers
are still only somewhat representative of tumor motion, @mdot reflect the actual motion

of the tumor.

2.2.2 Computer Vision and Medical Imaging

There has been significant work in the computer vision comtywam tracking [9], and
we highlight only one method here, the Kalman filter [38]. Aanw tracking methods,
the Kalman filter uses a type of feedback control to estimaetitacking process. The
filter continually estimates the process state at a giventpai time and then obtains
measurements to use as feedback for the estimation. Thetdidg€alman filter is used
when the relationship between the process and the measussnoe the process itself,
is linear. However, if the breathing motion is modeled asrausoid where amplitude,
frequency, and the DC component must be estimated simolizhethe process is non-
linear. The extended Kalman filter (EKF) can address sucHinear processes. Choosing
the parameters which govern the filter is problematic fos #pplication for two reasons.
First, although breathing is roughly sinusoidal it is néatisnary and can possibly change

drastically if the patient inhales sharply. In this case eeffithat is based on a fixed
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amplitude, frequency, and DC component may not be benefiGakondly, the time a
Kalman filter needs to choose the parameters accuratelydvedigin be unacceptably long,

due to the excess radiation that would be delivered to thergat

There exist other methods from the field of signal processingstimate the param-
eters of a sine wave. Fourier analysis is one technique wtachbe used to find the
dominant frequency of a signal. The results of this metheddapendent on the frequency
at which the data is sampled as well as the number of sampkesauBe the data we are
working with is sampled at a relatively low frequency, 30 ifa, a short amount of time,
5-10 s, the set of frequencies which the method can idergtifygically more limited than
desired. Furthermore, radiation oncologists place morght®n the peaks and troughs
of the breathing cycle and consider these points to be mal#est Therefore it would be
desirable to have a method that takes this practice intoustcd his is why we developed
a method which relies more heavily on the maxima and mininth@breathing cycle than

Fourier analysis to estimate the frequency.

There has also been much work done in the medical imaging contyron tracking,
in particular in the areas of fMRI and cardiac motion (e.§3]) and blood flow analysis
(e.g., [29]). This work is usually done with higher resatutimaging techniques and also
often involves a large amount of prediction. Additionathygse methods often incorporate
intense computation when estimating the motion and so witteat computing technology

they cannot feasibly run in real time.
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2.3 3D Modeling, Transformation, and Defor mation

Because tracking tumors in 3D is a relatively new area ofatash therapy it is important
to study how 3D information is used in other areas for whichrB@deling methods have
been developed. There has been ample work in the computgnigsaand the computer
vision communities with respect to 3D representations ¢géaib [9, 15]. Bookstein [5]
proposed to use pairs of thin-plate splines to model bickgihape change as deformation.
A thin-plate spline is the 2D analog of a cubic spline. Ther displines acts as an
interpolation map which relates two sets of landmark poimdscording to Bookstein,
“The spline maps decompose, in the same way as the splingcesrfinto a linear part
(an affine transformation) together with the superpositbprincipal warps, which are
geometrically independent, affine-free deformations ofgpessively smaller geometrical
scales.” He gives examples how this can be used for biolbdata, and explains how it

can apply to 3D data.

Another method for dynamic deformable models was propogéddiaxas [22]. This
method involves using solid primitives which are allowedigform kinematically as well
as undergo global deformations to produce realistic anamat These animations display

physically correct behavior.
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2.3.1 Medical Imaging

Much work has been done in the medical imaging community végipect to 3D models.
For the most part this work concerns non-rigid registrati@tween a hand segmented
volume and other scans of the same organ which has undergcmenge in position or
shape. In this section we will discuss one recent exampleLeidb et al. [21] studied
the effects, namely motion and deformation, that resginatiad on the heart via magnetic
resonance (MR) images. They took several scans of eachhpatielifferent levels of
inspiration. In one of these scans they segmented the helarne by hand. Then an
automated procedure was used to calculate a free-formrdafmn by iteratively altering a
uniform array of B-spline control points which were each 1 mpart. These deformation
fields were also used to create a motion model. The chief ugesofvork to is to correct
for the artifacts caused by heart motion during free bregtsicans. Similar models have
been developed for the liver (e.g., [4]), but the chief ainthelse models is to help treatment

planning for radiotherapy.

There has also been much work in registering 2D images (XtayD images
(MR/CT) [35, 19]. This is usually done for the purpose of iraeguided therapy which
allows surgeons to use the pre-operative scans (MR/CTigstrgery. Because the patient
cannot be repositioned in the exact same way as when theppratve scan was taken, an
X-ray is often taken during treatment and used to computarstormation between the
pre-operative and intra-operative coordinate systemis. dllows the surgeon access to the

high quality MR/CT data which would not otherwise be avdiatiuring surgery.
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24 Summary

There has been significant work in the radiation therapy camiyn[14, 39, 1, 28, 34, 27,
32, 33, 23, 16, 20, 36, 8, 30, 26, 37, 25, 12, 10, 31] which gitero address the problems
that the motion of lung and abdominal tumors during treatnoam cause. Breath-hold
techniques [14, 39, 34, 27] seem to make the tumor reproyustiaitic, but they are often
too difficult for the patient to endure. Studies of indireetigg methods [23, 20, 36, 8,
26, 37, 12, 10] have shown correlation between internal erar&nd external indicators of
the breathing signal over short (30 s) periods of obsematitowever, these studies only
examine internal marker motion in two dimensions. The mobbthe internal markers
must be studied in 3D and longer periods of observation ayeined. Gating and image-
guided methods [1, 28, 32, 33, 16, 30, 26, 25, 31] which usmentacking give good
estimates of internal marker position in 3D, but they arerotb costly too implement and
can expose patients to excess radiation. Furthermores thethods often rely on only one

internal marker to represent tumor motion [16, 25, 31].

Tracking has been more extensively studied in the compugsesn/community. Al-
though the extended Kalman filter has the capability to eggmon-linear processes like
breathing, it might not be beneficial in the case where biegtis modeled as a sinusoid

and the parameters for amplitude, frequency and the DC coemare fixed.

There has also been much work in the area of 3D modeling [31,22,, 35, 19], but it

has yet to be used in relation to internal marker trackin@dation therapy. Additionally,
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it is not feasible to apply some of the methods to the probldissussed in this thesis

because the methods can require more information thaniiglaleefrom the fluoroscopy.



Chapter 3

M aterials and M ethods

Fluoroscopic imaging provides a two-dimensional (2D) ectipn of the density values of
the imaged body. The surgically implanted internal marKelips) can be detected and
tracked in the fluoroscopic image sequences since metaliis-opagque and has a higher

density than the surrounding tissue.

During treatment planning, radiation oncologists tyfdicatquest fluoroscopy from
two views, the Anterior-Posterior (taken along txaxis) and the Lateral (taken along the
x-axis) views. Because these views are orthogonal, we camioenthe tracking data to
recover how the positions of the clips change in three dim@sg3D) over time. The setup
of the imaging system is such that the Anterior-Posteridrlaateral views share theaxis
of the respective images, which is the Cranio-Caudal axte@patient, and the isocenter

of the patient is at the center of the image (Fig. 3.1).

(Anterlor—Po sterior)

; ; U(Cramo —Caudal)

(Left—nght)

Figure 3.1: lllustration of the coordinate system of flu@asic views. The patient is lying
on his or her back with the head towards the positheordinate axis.
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During treatment planning, radiation oncologists alsaes a CT scan. The tumor
is then contoured manually on the CT by the radiation onastegThis expert knowledge
can be used to our advantage by first determining a relatijpmstween the clips, which
are visible in the scan, and the contour. Each clip movedlyidiut the collection of clips
generally moves non-rigidly with respect to itself. If wevieaa sufficient number of clips,
we can infer from the rigid motion of the clips in 3D the nogid motion of the tumor

volume in 3D by using the contour and clips to generate a maidéle motion.

The motion of the clips observed in the fluoroscopy along liga CT scan tumor
contour are the inputs from which a model of the 3D motion efphatient’s tumor can be
built for use during treatment. From the radiation oncdtgjistandpoint the overview of

the system is shown in Fig. 3.2.

Obtain Two Orthogonal _| Build Model of Tumor Motion | Use Model During

Fluoroscopic Image Sequence Due to Patient Breathing| Treatment
and CT Scan

Figure 3.2: High-level overview of goals of method from aiedidn oncologist’s point of
view.

One of the goals of this thesis is to develop a system thatwollk in hospitals
with different technological capabilities. The main diface in technology is the type of
fluoroscopic imaging system which is mounted on the linachimec If the imaging system
has multiple panels which can be used simultaneously, tietotation of the clips in 3D

can be directly estimated from the fluoroscopy. This infdraracan then be immediately
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coupled with the tumor contour to produce a model of 3D tummume motion. This
model can then be either correlated with external markensde in gated therapy, or during
image-guided radiation when online imaging is availableasiMinac machines, however,
have only single-panel imaging systems which cannot be dseithg treatment. This
means that the 3D position of the internal markers cannotifeetty estimated. Instead,
we propose to estimate a model of the 3D clip motion from twgusatially obtained
orthogonal fluoroscopic image sequences. Although annatenarker's motion in the
z-direction is not exactly the same in both image sequentés typically similar. This
is because each of the orthogonal fluoroscopic image segsi€Anterior-Posterior and
Lateral) are taken only minutes apart, during which thegpdi8 breathing and anatomy do

not change drastically.

When only sequentially obtained fluoroscopic image seceence available, certain
assumptions must be made in order to build a model. Gengoadisithing is well described
by a sinusoid for short sequences of time when the patiemeathing regularly. Because
the modeling algorithm will be used on sequences of apprataiy 30 s we believe this is
a reasonable initial assumption, and so we estimate theng#eas of a sine wave model
based on the two sequentially obtained fluoroscopic imageesees. The objective is to
model the average and maximum range of 3D clip motion. Oniseigidone, the tumor
contour can be used to build a final model of the 3D tumor volam&on. This can then

be correlated with external markers for use in gated therapy

The model building section of the system can therefore takepiaths. Either the 3D



24

position of the internal markers can be directly estimatedmultiple-panel fluoroscopic
imaging system is available, or the 3D position of the indémarkers must first itself be
modeled if only a single-panel imager is used. The overawof the steps which the

system takes is shown in Fig. 3.3.

Orthogonal Fluoroscopy Videos CT Scan

e 2D Tracker [--------- “ Register Clips

| with Tumor Contour

v \
Estimate 3D Clip Calculate Model of Average
Postion Directly or Maximum 3D Clip Motion
vy R
Calculate Model of 3D Calculate Model of Average

Tumor Volume Motion | | or Maximum 3D Tumor Volume Motion|
. . :

: \ 4
TR RREE ﬂ Correlate with External Markers

, ¢

Beam—guided Parameters Gating Parameters

Figure 3.3: Detailed overview of method. Dotted lines imadic steps taken when a
multiple-panel fluoroscopic imaging system is availablasbed lines indicate steps taken
when only a single-panel imaging system can be used. Sokd lare steps taken in both
cases. Gray boxes have not yet been implemented.

3.1 2D Clip Tracking

Tracking the motion of the clips implanted in the patient tendifficult. Although the
metal which the clips are made of has a higher density thastthetures and tissues of the
body, the clips are not always easily visible. This is beeahg surrounding tissue may

also appear dark at times or contain edges due to high-gldrwsie structures such as the
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spine (Fig. 3.4) and the images themselves can become danigdlohalation (Fig. 3.5).

Figure 3.4: Subsection of a fluoroscopic image containingcian of the spine with the
vertebrae edges indicated by white arrows and a surgigai@dirked by a white rectangle.
Clip and spinal section have similar intensity values.

Below the real-time algorithm for tracking the 2D motion otlp in fluoroscopy
which is based on previous work done by our group [3] is descti The following proce-

dure is performed in parallel for all of the clips in a givenditascopic image sequence.

3.1.1 Initialization

The tracking method is initiated by manual selection of @aamegular region containing a
clip in an initial fluoroscopic imagé. In order to find a minimal rectangle containing each
clip, the largest “dark” connected component in each regsoiound by first binarizing
the image according to an automatically computed ptilestiot& for the region. A ptile
threshold is one in which a threshold is chosen suchyitedf the image area has grayscale
values less than the threshold, and the rest of the imagenasegrayscale values greater

than the threshold. The percentagas fixed, and the threshold is computed online.



26

Figure 3.5: Two subsections of fluoroscopic images takemdimhalation and exhalation,
respectively, clips marked by white rectangles. The imagthe right is much darker, and
the clips have changed position relative to each other.

When manually selecting users are instructed to make the rectangular region as small
as possible. Given this instruction and the average sizectyp 45 mm), it was found that
the algorithm performed well whemwas set at 20%. The rectangular region is used as a
(w x h) grayscale templaté’ of the clip. The location of the template inprovides the

starting coordinates for tracking the clip in subsequemiriacopic frames.

3.1.2 Tracking Algorithm

The normalized correlation coefficient is used to find thatposof the clip in subsequent

image frames. The value of the normalized correlation auefft at positior(z’, y') is

S 6 3y +y) = D(T(w,y) = T)
U@t ny 9 - Py, Ty - 17

: (3.1)

Rrr(2',y)
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whereT and/ are the respective mean intensities within the templateraade window.
The tracking algorithm searches for the best match of tipetetnplatel” with a region of
the imagel. This is done by shifting the templafethrough the image to various points
(«’,y") and correlating it with eackw x h) sub-image ofl. The location(z’, ') which

maximizesR; r is taken to be the new clip location.

Searching over all positiong’, y’) in I is computationally expensive. Because we
know that the clips do not move much from frame to frame, itasgible to restrict the
size of the sub-region of which will be searched. The apparent velocity of the clip’s
movement in the image is calculated to predict the clip locan the next frame. Velocity
(u,v) = (‘fl—f, %) is approximated in terms of the rate of changeriandy from the past
frame to the current framefu,,1,vi11) = (2 — 21,9 — yi—1). We assume that the
velocity is constant for two consecutive frame pairs, arel(us,;, v;,1) as an offset from
the current positiofix;, ;) to determine the centér; + ;. 1, y; + v¢41) Of @5 x 5 region
of interest (ROI) to search over in the subsequent frame,l. When the clip reaches a
minimum or maximum of the breathing cycle in its trajectondaeverses its direction,
this assumption does not negatively affect the trackingcaBse the clip typically does
not move by more than one pixel per frame, the clip will remaithin the5 x 5 search
window. By not weighting the ROI with probabilities as a Kamfilter would, all locations
within the ROI are equally valid and so the correct positiolhnot be negatively weighted

because it is in seemingly violation of the model. Within anfie the velocity will be

reversed to reflect the new trajectory.
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3.2 Estimated Model of 3D Clip Motion

The 2D tracking software produces a set of time-indexed 2idinates for each fluoro-
scopic view. The tracker output of two sequentially obtdifleoroscopic image sequences
will then give us four trajectoriesz(t), y(¢) and two trajectories fot(¢). In general the
algorithm works by first processing the tw¢) trajectories. To calculate a model for one
of these 1D trajectories, we compute the DC component, amadeliand frequency of a sine
wave which models this motion. In order to do that, we needrtd fhe maximum and
minimum of each breathing cycle. After the model is compdtedoth z(¢) trajectories,
the models of other two trajectoriest) andy(t) are calculated. Finally, the results of
the calculations of the 1D models for all four trajectories @ombined to form a final 3D

model of the average or maximum range of motion of the clip.

We present the description of the algorithm in three partdiGtling the maximum
and minimum of each breathing cycle for a given trajectojycEmputing the DC compo-
nent, amplitude and frequency of a sine wave which is a 1D inedéven trajectory (3)

combining the four 1D models into a 3D model.

3.2.1 Findingthe Maximum and Minimum of Each Breathing Cycle

It is difficult to determine the maximum and minimum of a bteag cycle for several
reasons. First, there is often no change of position of tipeiclsubsequent frames of the

time-indexed trajectory because of the rests a person kel inhale and exhale. Sec-
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ondly, the clips move slowly and the motion appears as eitbehange or a small change
in the image. These conditions result in a step-like diszireg effect in the trajectory,
and makes the moments in time when the maximum and minimumabf lereathing cycle

occur difficult to identify.

After a smoothing operation the maximum and minimum of eaelathing cycle can
be identified uniquely even if their positions in time werd aaoginally unique (Fig. 3.6).
The trajectory is smoothed using a 1D Gaussian kernel witippat of j=10 frames (or
1/3 second) and a standard deviaterl frame. This kernelr is generated by constructing

an array oR2; + 1 entries, whoséh value is:

G — exp(—w). (3.2)

Because a typical human breathing cycle is about 150 fraores ¢econds), we chose a
support of 10 frames to adequately smooth over the platebichwesult from the stepping

effect in the trajectory.

After smoothing, a modified sliding-window technique is bgxbto find the maximum
and minimum of each breathing cycle of the smoothed trajgctit) as follows. The
global maximuny,,.. and minimuny,,;, of the entire data set are determined. A threshold

T is set to be equal to 110% of the difference betweggn. andg,,;.:

7 =110% - (gmaz — Gmin)- (3.3)
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Figure 3.6: A close-up view of one of the peaks of the bregtluycle. The original
trajectory produced by the 2D tracker (red) has severamtgs of the maximum, but after
smoothing (green) only one instance of the maximum exists.

This threshold represents an aggregate distance courge8(F). By making the threshold
slightly greater than the largest amount of distance betwge, andg,,.;, we ensure that
we are thoroughly searching the trajectory because thadistsearched is greater than the

distance traversed in one half cycle. Also, we are providoogn for some jitter in the data.

The initial point of the data set could be anywhere in the thieg cycle, so the algo-
rithm first determines if the patient is in an inspiration @pieation phase by comparing
the first point of the trajectory’(0) with a point 20 frames later in the trajectog}(20).
We choose 20 frames here because it is far enough to overoayrjdter in the data. If
2'(20) > 2/(0) then the patient is in an inspiration phase and the algonitiihsearch for a
maximum. Otherwise the patient is in an expiration phaselamdlgorithm will search for
a minimum. The algorithm steps along the trajectory and &&egek of the distance (in

the z dimension) travelled, by aggregating the difference betwsubsequent points(t)
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Figure 3.7: An illustration of how the modified sliding-wio technique works with the
one dimensional trajectory is shown in red. In an initialgda, .. andg,,.;,, are found, and
the threshold- is computed. In the second phase the maxima and minima oféaghing
cycles are found. Here the aggregate distance count (ghbesgifs at the point where
the most recently processed local maximum was found andwhes the threshold is
reached. It represents the amount of distance searchefbotke next local minimum.

andz'(t +1):

dk = dkfl + ‘Z/(t -+ 1) — Z/(t)|. (34)

When searching for the maximum of a breathing cycle, therdlga records the time index
t., the value of the point'(¢.), and the distance travelle when its value exceeds the last
recorded value’(t)) of a candidate for the maximum. When> 7" the information about
the last recorded candidate for maximum is reported. Thamle is updated as follows:
d, = dy — d;,. This has the effect of resetting the aggregated distanaetepto the time
the maximum occurred. Then, the algorithm begins lookimgfiminimum. The procedure
for this is identical, except that the algorithm records tihee index and value of a point

when its value is less than the last recorded value.
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This procedure yields the time indices of the maxima and méxdi ,. . .[,,,, wherem

is the total number maxima and minima. These time indicesloambe used to index into

the original unsmoothed trajectogyt).

3.2.2 Calculating the Parametersof a 1D M odel

After the maxima and minima of the breathing cycles have hdentified, the algorithm

calculates the parameters of a sine wave which models the & can calculate a model

of both the average motion and the worst case (maximum) mofidve only difference

in these models will be their amplitude; the DC component fiaquency will remain

the same. Assuming that a maximum is found first for the sak®otdtion, the average

amplitudea,,, is given by half the difference between the average maximuach the

average minimum of the breathing cycles:

Qavg = % <Z Z(bzel) - Zz(lzi)> .

i=1 i=1

The maximum amplitude is given by:

_ 9maz — Gmin
Qmar = 9

The periodp is given by twice the average time of a half cycle:

2 m
p:mzai_lifl)a

=2

(3.5)

(3.6)

(3.7)
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The frequencyf is the inverse of the periodf = 1/p. We can determine the DC

componenb of the z motion by finding the average value

1 lm—l

0= —— Z (i), (3.8)

lm—l - ll .

over all points in the trajectory, whereis the number of frames in the trajectory.

Finally, we can then define the average or maximum pattezmadtion as a sine wave
given by:

0+ asin(27 ft), (3.9)

whereaq is eithera,,; O a4 -

We assume that each clip follows a roughly linear trajectang so the maximum and
minimum of each breathing cycle for the trajectories of thaion in thez-direction and
they-direction must occur at the same times as those of the miotite --direction. Thus,
when calculating the models for the motion in thelirection and thes-direction, we do
not need to recalculate the maximum and minimum of eachtoregatycle. It is sufficient
to reuse the time indices calculated for the model of the@nah thez-direction, evaluate
x(t) andy(t) at the those times, and perform the calculations outlinexyeb This also

ensures that the model will remain in phase with itself.
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3.2.3 Calculating the Parameters of the Final 3D Model

After the 1D models are computed for the four trajectoriediase four sets of parameters:
{0g,az, f2}, {0y, ay, fu}, {021, a1, fa1}, {022, az2, f22}. These parameters are processed
together to calculate the final 3D model as follows. The cpoading parameters of the
two models of the motion in the-direction are averaged. The frequency parameter of
the models of the motion in the-direction and they-direction are updated to use the
average frequency calculated for the model of the motiohen{direction. This results in

a parametric equation which describe a model of the motidhe€lip in 3D:

m(t) = o+ asin (27ft), (3.10)

— 0214022 — az1+az2 _ (faatfe2 faitfeo faatfeo
whereo = (0., 0y, 213°22), a = (a,, a,, =15%2), andf = (L2 Latle Jatla)

Fig. 3.8 shows the range of motion in an actual fluoroscopagethat the estimated

model of average 3D motion yields.

3.3 Fourier Analysis

To evaluate the modeling algorithm Fourier analysis wasl dseestimate the dominant
frequency for each of the 1D trajectories. A discrete Fasirieo Transform was used to

do this:
Ns—1
F(EAf) = f(nAt)e Creanman, (3.11)

n=0
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Figure 3.8: Two subsections of fluoroscopic views of patiuak (Anterior-Posterior on
the left, Lateral on the right) taken during the peak of a tineg cycle (patient is in full
inspiration). Clips are marked by rectangles. Clip 3 in tlievdew and clip 1 in the Lateral
view are the same clip. The average range of motion from timated 3D model is shown
inred.

fork =0,1,2,..., Ny, — 1, where N, is the number of discrete samplés, is the total
sampling time At = T,/N,, and f, = N/T' is the sampling rate of the original signal.
The dominant frequency was obtained by finding the frequeurittythe highest magnitude
in the first N, /2 samples of the spectrum (only the firSt/2 frequencies are useful due

to the Nyquist criterion). It should be noted that this impentation of the Fast Fourier

Transform restrictsv, to powers of 2.

3.4 Correation with External Markers

In previous work [12, 10], we showed that the 2D motion of in&& markers correlates
with the motion in they-direction of a set of external markers. This study, as welhe

previous one, differs from other work dealing with extermerkers [23, 20, 36, 8, 26, 37]
in that instead of having only one external marker, we useainabf beads, each of which

is a single marker, placed on the patient’'s abdomen. Ttosvalus to examine the external
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motion at several different points on the abdomen of theepagimultaneously. Fig. 3.9

shows a fluoroscopic image containing both the internal ateteal markers.

Figure 3.9: Lateral fluoroscopic image of patient Nancy lhitee external markers, which
are beads marked 3, 4, and 5, resting on the patient’s abd{ngét), and two internal
markers (clips) marked 1 and 2.

We have extended our previous work [12, 10] to examine how3fbeestimated
average motion of a clip is correlated with the motion in thdirection of an external
marker. The correlation is calculated between the motioa ofip in each of the three
dimensions and the motion of the external marker ingtftBrection. The chain of beads
results in many external markers, and for this study we ctioge beads on the chain with
which to correlate the internal marker. The correlatioroisfd by comparing the positions
of the external and internal marker at each point in time, famding the regression line

which fits that data.



Chapter 4

Results

Fluoroscopic videos were collected with a Varian Ximatradiotherapy simulator with a

resolution of640 x 480 pixels with 8 bits per pixel at 30 frames per second. The Chsca
were taken with a General Electric Lightspeed scanner ak¥®0The computer used to

process the data was an Intel Xeon 1.7 GHz with 1 GB RAM and anA{Jin-Wonder

9800 graphics card.

4.1 2D Clip Tracking

Examples of trajectories produced for four patients forhbibte Anterior-Posterior and

Lateral views are shown in Fig. 4.1.

A ground truth study involving 5 patients was done. Grounthtivas established for
the motion of five clips, one per patient, using the AnteRaisterior views. We manually
recorded the centroid of each clip for every tenth frame efithage sequence, or every
1/3 second. The ground truth positions were then compartdthe trajectory produced
by the 2D tracker. Table 4.1 shows the averages and standeaiatidns of the root mean
squared (RMS) and the maximum error in centroid positionamheclip’s motion in the
z-direction and the-direction. On average, the mean and standard deviatidmedRMS

error of detecting each of the 10 motion trajectories ween.5 mm £ 1 pixel).

37
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Figure 4.1: 2D motion of clips of four patients in Anterioo$terior and Lateral Fluo-
roscopy.
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Table 4.1: Clip Localization Error

Patient Direction of Motion Root Mean Squared Error | Max
(RMS) Error

Mean (mm)| Std. Dev. (mm)| (mm)

Alice AP View z-direction 0.61 0.58 2.31
Alice AP View z-direction 1.21 0.58 2.00
Doug AP View x-direction 0.40 0.15 0.74
Doug AP View z-direction 0.39 0.38 1.50
Eve AP View z-direction 0.25 0.25 0.74
Eve AP View z-direction 0.23 0.26 1.00
Frank AP View z-direction 0.25 0.23 0.74
Frank AP View z-direction 0.41 0.33 1.00
Gary AP View z-direction 0.48 0.32 1.48
Gary AP View z-direction 0.47 0.24 1.00
Average 0.47 0.33 1.25

4.2 Estimated Model of 3D Clip Motion

This study involved 2 patients. In order to evaluate the emguof the estimated model of
average 3D motion we compared the trajectories of averagi@mwith the corresponding
four original trajectories obtained from the 2D trackere($eg. 4.2). The 1D estimated
model parameters for the two patients are shown in Figs. dd24a4 and the final 3D

estimated model parameters are shown in Figs. 4.3 and 4.5.

Table 4.6 shows the averages and standard deviations afdhmean squared (RMS)
and the maximum error in centroid position of each clip’s imotin the z-direction, the
y-direction, and the-direction. On average, the mean and standard deviatidredRMS
error of the model were under 0.3 cm = 3.0 mm { pixels). The periog is included for

the sake of comparison.



Table 4.2: 1D Estimated Model Parameters: Patient Jack

T z1 Y 22
o(mm) | 4.16 || 0.02| 4.17 || 0.35
a (mm) | -0.18 || 0.69| -0.17 || 0.53
p(s) 446 || 446 || 4.29 || 4.29
f(Hz) | 0.22 || 0.22 || 0.23 || 0.23

Table 4.3: 3D Estimated Model Parameters: Patient Jack

T Y z
o(mm)| 4.16 | 4.17 | 0.18
a (mm) | -0.18 | -0.17 | 0.61
p(s) | 4.38 | 4.38 | 4.38
f(Hz) | 0.23 | 0.23 | 0.23

Table 4.4: 1D Estimated Model Parameters: Patient Nancy

x z1 Y 22
o(mm) | -7.36| -1.36 || -1.72 || -1.55
a (mm) | 0.10 || 1.08 || -0.46 | 0.97
p(s) | 5.27 || 5.27 || 435 | 4.35
f(MHz) | 0.19 || 0.19 | 0.23 | 0.23

Table 4.5: 3D Estimated Model Parameters: Patient Nancy

x Y z
o(mm)| -7.36| -1.72| -1.45
a(mm) | 0.10 | -0.46 | 1.02
p(s) | 481 | 481 4.81
f(Hz) | 0.21 | 0.21| 0.21
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Figure 4.2: 2D motion of clips of 2 patients (red) and thespective estimated models of
average 3D motion in Anterior-Posterior and Lateral Flsonpy (green).

Table 4.6: 3D Estimated Model Error

Patient Direction of Motion| Root Mean Squared Error| Max
(RMS) Error

Mean (cm)| Std. Dev. (cm)| (cm)

Jack Lateral View y-direction 0.01 0.02 0.24
Jack Lateral View z-direction 0.07 0.11 0.58
Jack AP View z-direction 0.02 0.03 0.14
Jack AP View z-direction 0.25 0.31 1.87
Nancy Lateral View y-direction 0.33 0.27 1.23
Nancy Lateral View z-direction 1.49 1.22 5.43
Nancy AP View x-direction 0.01 0.01 0.06
Nancy AP View z-direction 0.27 0.38 2.37
Average 0.30 0.29 1.49
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Tables 4.8 & 4.7 show comparisons between the frequérestimated by the model-
ing algorithm and the dominant frequency estimated by eoamalysis for each of the 1D

trajectories.

Table 4.7: 1D Frequency Parameter Comparison: Patient Jack

Estimation Method f (Hz)

T z1 Y 22

Modeling Algorithm | 0.22 | 0.22 || 0.23 || 0.23
Fourier Analysis | 0.23 || 0.23| 0.21 || 0.21

Table 4.8: 1D Frequency Parameter Comparison: PatientyNanc

Estimation Method f (H2)

x z1 Y z2

Modeling Algorithm | 0.19 || 0.19 || 0.23 || 0.23
Fourier Analysis | 0.23| 0.23| 0.21] 0.21

4.3 Corrédation With External Markers

This study involved 2 patients. The only 3D motion data coftyeavailable to us that
includes external markers is the 3D estimated model of geamaotion. Fig. 4.3 shows the
trajectories of the external markers in thi@irection along side the 3D estimated models

of average motion in each dimension.

We studied the correlation between the 3D estimated modékohverage motion of
the clip in each dimension and the motion in thelimension of each of three markers

for two patients. By way of comparison, we included the datren between the tracked
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motion of the clip in two dimensions and the external marlkesrg/ell. The correlation was
measured by plotting the motion of the internal marker agjaime motion of the external
marker and then computing the linear regression line whisltlie data. The sum of the
squares of the vertical deviations from the lid&) was used as the measure of correlation.
Table 4.9 summarizes the results and Figs. 4.4 and 4.5 sleowotihelation plots for both

the tracked motion and the 3D estimated model of the averag@mifor the two patients.

The correlation with the tracked motion was 0.88 on averagéthe correlation with
the 3D estimated model of the average motion was 0.53. Tipeslof the regression lines
are included for purposes of comparison. For the patierk, dae slopes of the regression
lines of the correlation which uses the 3D estimated modelvefage motion are very
similar to the slopes of the regression lines of the cori@tatvhich uses the tracked motion.

However, for the patient Nancy, this is not the case.
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Figure 4.4: Motion in they-direction of external marker 2 (blue diamonds), 3 (pink
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Table 4.9: External Marker Correlation

Patient Direction External Marker R? Slope

of Clip Motion Number Tracked| Modeled| Tracked| Modeled

Motion | Motion | Motion | Motion

Jack z-direction 2 - 0.64 - 1.34
Jack z-direction 3 - 0.62 - 1.75
Jack z-direction 4 - 0.58 - 1.70
Jack y-direction 2 0.82 0.64 1.32 1.27
Jack y-direction 3 0.80 0.62 1.71 1.65
Jack y-direction 4 0.71 0.58 1.62 1.61
Jack z-direction 2 0.94 0.64 -4.14 -4.58
Jack z-direction 3 0.90 0.62 -5.34 -5.96
Jack z-direction 4 0.83 0.58 -5.14 -5.82
Nancy z-direction 3 - 0.41 - 0.46
Nancy x-direction 4 - 0.35 - 0.27
Nancy z-direction 5 - 0.32 - 0.15
Nancy y-direction 3 0.86 0.41 3.11 -2.16
Nancy y-direction 4 0.93 0.61 2.10 -1.36
Nancy y-direction 5 0.95 0.88 1.24 -0.60
Nancy z-direction 3 0.91 0.41 -6.34 4.79
Nancy z-direction 4 0.97 0.35 -4.24 2.85
Nancy z-direction 5 0.99 0.32 -2.51 1.60
Average 0.88 0.53

a7



Chapter 5

Discussion and Conclusion

Our method can be used in settings where the latest technaleg simultaneous orthog-
onal fluoroscopy, is not available. During the course of ghigly it became apparent that
equipment shortcomings were not the only problem we facethglithe data acquisition
phase. Because work in this field is relatively new, radrmbocologists do not always
collect data which is as usable to us as possible (e.g., a giygis not always visible in
both fluoroscopic image sequences). It is often not cledrafdata is usable until after it
has been analyzed. The possibilities of the kinds of inféienavhich can be recovered
are still emerging. One goal of our work is to develop and destrate the ways in which
information can be recovered and establish a dialogue \Whrédiation oncologists to

explain ways to improve data collection methods.

5.1 2D Clip Tracking

Estimating the location of a tumor accurately is crucial novpding effective and safe
radiation therapy. The ground truth study of our clip trackisystem shows that the
average RMS error and standard deviation is 0.47 mm and Om83respectively. This
is a considerable improvement of the 1.5 mm error of the RTy&tesn [32, 33]. This is

underscored by the fact that the internal markers our systasitested on were typically

48
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5 mm long while the RTRT system uses 2 mm markers. An errorsaiitn when tracking a
2 mm object misses the object by 75%, whereas an error of O Wiren tracking a 5 mm
object only misses the object by 9.4%. The RTRT system ug&2s x 1024 pixel images
with 8 bits per pixel. Whereas our system was only tested asalution 0f640 x 480
pixels with 8 bits per pixel. Our system achieves more a¢eyparformance than the RTRT
system on lower resolution data, and would most likely dodaetter given higher quality
images. Additionally, our method has the capability tokramre than one marker which is
necessary for designing a method to recover 3D tumor posatiol deformation accurately.
The RTRT system, which in the reported studies did not usekitng information for
multiple internal markers for the purpose of estimating darposition, is currently used

by most of the groups doing internal marker tracking [32,3&8,25, 31].

Although error statistics are given for the RTRT systemrehie no detailed expla-
nation of how the error was calculated [32, 33, 30, 25, 31]. nBynually marking clip
position in the images and comparing that with tracked posstwe have explained how
we calculated the error of our system. If the informationquaed by the tracker is the first
step of a system which models tumor motion its error shouldriayzed. By calculating
the error of the measurements which the rest of our systaesreh we can give a more

accurate estimate of how reliable the system will be overall
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5.2 Estimated Model of 3D Clip Motion

Due to regulations of Massachusetts General Hospital we weable to gather additional
fluoroscopic data from the same patients with which to complae model, but we were
able to assess if the assumptions made by the modeling thiigowere reasonable. This
was done by comparing the frequency parameter obtainedebytideling algorithm with
the dominant frequency obtained from Fourier analysis gandamparing the model with

the trajectories used to produce it.

The Fourier analysis yielded similar dominant frequenofgbe 1D trajectories to the
modeling algorithm (see Tables 4.8 & 4.7). The fluoroscopaken at 30 Hz for a short
amount of time, 5-10 s. This means that there are usuallydst®’ and2'® samples.
When using Fourier analysis the set of frequencies is theorelized with an interval
between 0.06 Hz and 0.03 Hz. The dominant frequency reguttom the Fourier analysis
differed from the frequency resulting from the modelingaithm by at most 0.04 Hz and
by as little as 0.01 Hz. If the dominant frequencies resgitiom the Fourier analysis were
used to compute the frequency for the 3D model the resultavouly be 0.01 Hz different

from the result produced by using the frequencies obtaigetido1D modeling algorithm.

Our algorithm places more weight on the maxima and minimaebtreathing cycles
because radiation oncologists rely on these points moreiljieaHowever, the results
from the Fourier analysis are very similar, so it is difficddtassert which method is more

successful. The modeling algorithm might perform betténéire were even fewer samples
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because the Fourier method would have even larger intdrealgeen possible frequencies.
Longer imaging times might be able to confirm which method aseraccurate. Addition-

ally, the two dominant frequencies of the 1D trajectoriea given fluoroscopic sequence
computed with Fourier analysis are the same. This confiraisair assumption that they

are the same is reasonable.

For one patient, Jack, the motion of a clip in two sequentialitained fluoroscopic
image sequences was similar enough to allow us to producefal usodel of the 3D
motion of the clip. However, for the patient Nancy, the madglalgorithm did not per-
form as well. In order to recover 3D motion of a clip directlyto calculate a model to
describe the motion it is necessary that the clip be presdmth of the orthogonal image
sequences. However, for all nine of the patients in thisysttlds condition only held
for two patients. Even for those two patients, only one cliggach patient was visible
in both image sequences. Thus, we had very limited data whilsiwto test our 3D clip
motion modeling algorithm. One goal of our work is to mota/ie radiation oncologists to
provide more usable data. It is desirable for the clip to Iséle in both image sequences,
and so we hope that this work will open a dialogue between éhésfiof computer vision
and radiation therapy to increase the availability of usalalta for testing. With more data
we could hopefully determine if the model will work duringbmequent treatment sessions
and to improve it if necessary. Allowing the patient to urytea little extra radiation during
observation will hopefully resultin a large reduction ofli@ion delivered to healthy tissue

during treatment because the tumor can be more accuratelielh
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With respect to the data that the system was tested on, the &K% of 3.0 mm
although reasonable is not ideal. If we look only at the RM$reior the estimated model
of 3D clip motion for the patient Jack, we see a dramatic deado only 0.8 mm. If
the original trajectories from which the models were pratuare examined it is clear
that the sequentially obtained image sequences of thenpaléek are better suited for
the modeling algorithm than that of the patient Nancy. Thi®eécause the patient Jack
breathed at approximately the same frequency during bo#gimg times, 0.22 Hz and
0.23 Hz. However, the patient Nancy breathed noticeabliefas the Lateral image
sequence, 0.23 Hz, as compared to the Anterior-Postegoiesee, 0.19 Hz. If a person
breathes at a different rate this can alter the pattern ofomofThis result indicates that

breath coaching might be useful if a 3D model of motion is ekfor treatment planning.

If breath coaching is not a possibility, another way to ab&@imore accurate model
could be to omit outlier breathing cycles when computinggheameters of the 3D model.
The breathing pattern of the Anterior-Posterior image sage of the patient Nancy had
two breathing cycles with longer periods than the other thieg cycles of the image
sequence. If these were omitted in calculating the 3D mdadelght increase the accuracy
of the model. However, this might not be a safe assumption.ethere are so few
breathing cycles to work with (in this study the lowest wat)e is sometimes not enough
information to accurately classify a breathing cycle as atli@r. Longer observation
periods would be one way to solve this problem. For the pahkamcy it seemed that the

main cause of the problems with the model were not causedtigrdoreathing cycles but
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rather the fact that the two image sequences had signifjodiffierent average frequencies

as mentioned before.

We hope to see if the model will work well for additional paiie when the data
becomes available. If so, the next step would be to test th@eiman subsequent fluo-
roscopy sessions to evaluate the day to day accuracy of tdelmidospitals do not like
to do more imaging than they deem necessary because it @s/ahwre patient risk due
to the increase of radiation received. However, if the masleluccessful for additional
patients, the potential to more accurately discern the tyosition during treatment might
be justification enough to warrant additional pre-treatmeraging to test the validity of

the model from day to day so that it can be cleared for use gurgatment.

5.3 Corrdation with External Markers

The study of the correlation between the motion of the exemarkers and the estimated
average 3D motion of the internal markers was likewise Behib two patients. The results
were nonetheless informative. The study yielded inforareéibout correlation between the
motion of internal and external markers and about the mogeligorithm. The correlation
between the motion of the external markers and the 3D esttnabdel of the average
motion for patient Jack, which was 0.61, was less than theeladion with the tracked
motion, which was 0.83. This is not surprising since the nhasl@ more generalized
version of the tracked motion, and when it was compared tartdeked motion of the

external markers it was less strongly correlated. This is guthe fact that the model
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smoothes over some of the small differences between bnegtlicles.

Although the correlation of the motion of the external maskeith the modeled
motion was not as strong as the correlation of the motion efetkternal markers with
the tracked motion, the slopes of the regression lines ¢f batrelations were very similar
in the case of patient Jack. To date, studies have only loak#lde correlation between
the motion of an external marker in one dimension, typicallyhe y-direction, and the
motion of an internal marker in two dimensionsand z. This is because of the setup
of most fluoroscopic imaging systems. In order to computectireelation between the
motion of the external marker and the internal markers thmaitions should be recorded
simultaneously. The easiest way to do this is to record fempy in such a way that all
of the markers are visible within the frame. Since most flsoopic imaging systems can
only be used from one viewpoint at a time, the motion of therm&l marker can then only
be observed in two dimensions. It is desirable to have in&ion about the correlation of
the external marker with the motion of the internal markethie unobserved-dimension.
Thus, when we look at the correlation with the model of motiorthe x-direction for
patient Jack we could conclude that the slope of the regnedisie of the data would be
similar to the correlation with the tracked motion in thelirection if it were available
because the slopes of the regression lines for data iy ted z-directions are similar.
We hope to confirm this with tests on additional patients.t I§ ithe case, the modeling
algorithm could provide correlation information about matin the z-direction that was

previously unavailable.
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The correlation between the motion of the external markadsthe 3D estimated
model of the average motion for the patient Nancy, which wd®,0was much poorer
than for the patient Jack, which was 0.61. This is most lilgalg to the problems with
the model outlined in the previous section. The poor catiglafurther brings out the
fact that improvements in the similarity of the frequencytlod breathing pattern between
two sequentially obtained image sequences are necessdfig. 4.3 the frequency of the
breathing pattern of the model of motion for patient Nancgsloot stay synchronized
with the external marker, whereas for patient Jack the madelthe external marker stay
synchronized. This problem illustrates well that if twotpats of motion slowly become

desynchronized due to a transient phase shift, the cameladll break down.

Because this study was only performed on two patients thétseare inconclusive.
However, the results obtained for patient Jack are promiaitd we are hopeful that tests
on more patient data will show that when the correlation leetwthe motion of the model
and the external marker is reasonably strong, and if theestdghe regression line for
the data is similar to that of the tracked motion, we can recanformation about the
motion of the internal marker in the-direction. Currently, the regression lines are used by
radiation oncologists to predict the motion of the intenmalrkers. This is done by using
the observed position of the external marker during treatragin index into the regression
line to predict the position of the internal marker. If a reggion line for the correlation
between the motion of the external marker and the motionefriternal maker in the-

direction is computed then this would allow us to use theradlemarkers to predict the



56
motion of the internal markers in all three dimensions.

The results from patient Nancy confirm that breathing is s@tionary and attention
must be drawn to this. One option to account for the fact thedthhing is non-stationary is
to use breath coaching [17]. A more thorough course of actouid be to use longer pre-
treatment observation times to generate a more reliablemodis could be done by using
the modeling algorithm to generate several different motiemodel different sections of
the longer breathing pattern. It seems that breathing id@egver short intervals, so if the
modeling algorithm were applied to small windows of times thould be reasonable. Then
during treatment the external markers could be monitorezhtmse which of the models
should be used. This would allow for more flexible and robustieling during treatment.
Ideally the pre-treatment imaging would expose patiensutistantially lower amounts of
radiation than the radiation that the patient’s healthgueswould be exposed to during
treatment, and our goal is to motivate more studies to thecef If more accurate 3D
motion models could be generated with longer pre-treatinesging sessions as proposed

than the extra radiation might be justified in order to berpsfttents during treatment.

5.4 Future Work

There is much future work to be done. We hope that this workmaltivate an even closer
partnership between the fields of computer vision and riadidherapy. We would like to
further test and subsequently improve the modeling methods method of improvement

would be to no longer rely on the assumption that clips hawvesli trajectories. This could
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be done by applying the section of the modeling algorithmciwhinds the maxima and
minima of the breathing cycles to all of the trajectoriese&ling a more dynamic model
once longer pre-treatment image sequences are obtainedtisea key goal. This work
serves to show that if Ozhasoglu and Murphy'’s [26] call farder observation periods is
fulfilled then gating techniques which account for the ntatisnary aspects of breathing
will be more easily developed. We hope that we will be ablestidize this goal once more

data is obtained.

It is known that tumors deform and that the deformation hatbssibility of greatly
altering the radiation both the tumor and the surroundisguie receive. 4DCT is a new
imaging technology which may be used to address the proltaosed by tumor deforma-
tion. It allows CT scans to be taken at many steps during th@nagory cycle. However, it
exposes the patient to more radiation, is generally mordycasd is not widely available.
It would be beneficial to have a method which allows for a samtype of information
recovery but works with technology which is not as advancetitherefore more prevalent.
Ozhasoglu and Murphy [26] stressed the importance of mongdhe tumor directly, but

this is difficult given current technological limitations.

Radiation oncologists often hand-contour the outline eftttmor in each slice of the
CT scan obtained for treatment planning. The contours geo8D information about the
shape of the tumor that could be used in conjunction with 8soopy to extrapolate 4D
information. Two example slices are shown in Fig. 5.1. THeWing describes a theory

which we will implement in order to attempt to model the matf the tumor volume.
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Figure 5.1: Two slices of a CT scan. The tumor contour is nayledlow. One clip in each
image is visible as a thick white mark outside of the contaundicated by the red arrow.
The pink cross marks the center of the image.

We propose the following method to model the motion and aeé&tion of the tumor
volume using the internal fiducial markers. First, transfdahe contours into a thin-plate
spline representation as described by Bookstein [5]. Inglthis, make sure that the clips
act as control points on the splines. If the clip does notilieatly on the tumor, then assume
that the clip moves rigidly with respect the closest pointtecontour, and use this point as
a control point. There will be additional control points aslihand they should be chosen
intermittently along each spline between the clip contahfs. The more of these points
that there are, the less influence each of the clip controitpavill have on the deformation
of the tumor. The number of non-clip control points will needbe determined with the
help of radiation oncologists. Using the 3D motion of th@sla model of the 3D tumor
motion can be generated. The new clip positions represemtetv positions of the control

points along the splines and a transformation and defoomatn be calculated.
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If the only available data is the 3D estimated model of avexdipp motion an average
model of tumor motion can still be generated. If tracked wmotin 3D is available the
model can be estimated directly. Although calculating taegformation and deformation
of a 3D object is computationally expensive, the model caiill be used with online
tracking as follows. During the pre-treatment phase databe&acollected and the model
can be generated offline. A lookup table of possible possticem be created. Then for
any given set of tracked clip positions during treatmenteiad of generating the model, it
(or the most similar model) can simply be looked up. This radtbould provide a way to
model the motion of the tumor directly. We hope to implemert test this method when

suitable data becomes available.

An additional potential benefit of this method comes fromnaxang how the clips
move relatively with one another. By combining the modelshef clips the overall error
of the system could be reduced. This is because the additrdoemation of the relative
motion of the clips will be used. In computing the 3D model winbr motion, if a clip
seems to be deviating too much from its expected trajectorguld be classified as an
outlier. This could account for mistakes made by the 2D chghker and the 3D internal
marker modeling algorithm. We hope to explore this in futwmek and to see how the

overall error of the system will be affected.

If further tests show that the modeling of the motion of inermarkers in 3D is
successful, using this information in conjunction with fireposed method to model the

motion of the tumor itself we could come even closer to futfgl Ozhasoglu and Mur-
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phy’s [26] request for direct tumor observation. We lookWard to working with radiation

oncologists to realize these goals and help improve thénexa of cancer further.
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