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REAL-TIME 4D TUMOR TRACKING AND MODELING FROM INTERNAL

AND EXTERNAL FIDUCIALS IN FLUOROSCOPY

JOHANNA M. BREWER

Abstract

Fluoroscopy is currently used in treatment planning for patients undergoing radiation ther-

apy for lung and abdominal tumors. Radiation oncologists seek to maximize the radiation

the tumor receives, and minimize the amount delivered to thesurrounding tissues, a task

made difficult by movement caused by the breathing of the patient. A model of the tumor

motion could greatly improve dose calculation and delivery. There exists a system which

directly estimates the location of the tumor, but this system is very costly and not widely

deployed. In this thesis a model which can be derived using less specialized equipment

is presented. First, a method of tracking the two-dimensional (2D) motion of internal

markers (surgical clips) placed around the tumor is presented and examined. A ground

truth is established by visual inspection of 10 data sets of 5patients to evaluate the tracker.

The root mean squared error in estimating 2D marker positionwas 0.47 mm on average.

Using two orthogonal sequentially obtained fluoroscopic image sequences, a method for

calculating a model of the average or maximum three-dimensional (3D) motion of the clips

is presented, examined, and compared to the direct estimation system. On average, the

error was 3.0 mm for four pairs of trajectories. If imaging ispossible during treatment, this

modeled motion can be used for beam-guided radiation, otherwise, the modeled motion

iv



can be correlated to a set of external markers for use in respiratory gating.

v



Contents

1 Introduction 1

2 Related Work 6

2.1 Radiation Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Breath-hold Techniques . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Gated Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Image-guided Therapy . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Radiation Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Computer Vision and Medical Imaging . . . . . . . . . . . . . . .15

2.3 3D Modeling, Transformation, and Deformation . . . . . . . .. . . . . . . 17

2.3.1 Medical Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Materials and Methods 21

3.1 2D Clip Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vi



3.1.2 Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Estimated Model of 3D Clip Motion . . . . . . . . . . . . . . . . . . . .. 28

3.2.1 Finding the Maximum and Minimum of Each Breathing Cycle . . . 28

3.2.2 Calculating the Parameters of a 1D Model . . . . . . . . . . . .. . 32

3.2.3 Calculating the Parameters of the Final 3D Model . . . . .. . . . . 34

3.3 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4 Correlation with External Markers . . . . . . . . . . . . . . . . . .. . . . 35

4 Results 37

4.1 2D Clip Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Estimated Model of 3D Clip Motion . . . . . . . . . . . . . . . . . . . .. 39

4.3 Correlation With External Markers . . . . . . . . . . . . . . . . . .. . . . 42

5 Discussion and Conclusion 48

5.1 2D Clip Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2 Estimated Model of 3D Clip Motion . . . . . . . . . . . . . . . . . . . .. 50

5.3 Correlation with External Markers . . . . . . . . . . . . . . . . . .. . . . 53

5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Bibliography 61

vii



List of Tables

4.1 Clip Localization Error . . . . . . . . . . . . . . . . . . . . . . . . . . .. 39

4.2 1D Estimated Model Parameters: Patient Jack . . . . . . . . . .. . . . . . 40

4.3 3D Estimated Model Parameters: Patient Jack . . . . . . . . . .. . . . . . 40

4.4 1D Estimated Model Parameters: Patient Nancy . . . . . . . . .. . . . . . 40

4.5 3D Estimated Model Parameters: Patient Nancy . . . . . . . . .. . . . . . 40

4.6 3D Estimated Model Error . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.7 1D Frequency Parameter Comparison: Patient Jack . . . . . .. . . . . . . 42

4.8 1D Frequency Parameter Comparison: Patient Nancy . . . . .. . . . . . . 42

4.9 External Marker Correlation . . . . . . . . . . . . . . . . . . . . . . .. . 47

viii



List of Figures

1.1 Example of a linear accelerator . . . . . . . . . . . . . . . . . . . . .. . . 2

1.2 Diagram of a linear accelerator . . . . . . . . . . . . . . . . . . . . .. . . 3

3.1 Coordinate system of patient setup . . . . . . . . . . . . . . . . . .. . . . 21

3.2 High-level Overview of Goals of Method . . . . . . . . . . . . . . .. . . 22

3.3 Detailed Overview of Method . . . . . . . . . . . . . . . . . . . . . . . .24

3.4 Spine crossing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . .25

3.5 Inhalation-induced darkening problem . . . . . . . . . . . . . .. . . . . . 26

3.6 Smoothing to find local maximum . . . . . . . . . . . . . . . . . . . . . .30

3.7 Modified sliding window technique . . . . . . . . . . . . . . . . . . .. . 31

3.8 Average motion shown in fluoroscopic image . . . . . . . . . . . .. . . . 35

3.9 External markers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 2D trajectories produced by tracker . . . . . . . . . . . . . . . . .. . . . . 38

4.2 Original trajectories compared to models of average 3D motion . . . . . . . 41

4.3 External markers and models of average 3D motion . . . . . . .. . . . . . 43

4.4 External marker correlation plots 1 . . . . . . . . . . . . . . . . .. . . . . 45

4.5 External marker correlation plots 2 . . . . . . . . . . . . . . . . .. . . . . 46

ix



5.1 Clips in CT slices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

x



List of Abbreviations

1D one-dimensional

2D two-dimensional

3D three-dimensional

4DCT four-dimensional computed tomography

ABC Active Breathing Control

ATT average tumor trajectory

CT computed tomography

CTV clinical target volume

DIBH Deep Inspiration Breath-Hold

DMLC dynamic multileaf collimator

DVH dose-volume histogram

IMRT intensity-modulated radiotherapy

IRIS Integrated Radiotherapy Imaging System

linac linear accelerator

MAX-T motion adaptive X-ray therapy

MR magnetic resonance

PTV planning target volume

RMS root mean squared

RTRT Real-time Tumor Tracking Radiotherapy

SMART Synchronized Moving Aperture Radiation Therapy

xi



Chapter 1

Introduction

Despite all of the advances of modern science the treatment of cancer is still an open prob-

lem. According to the Cancer Statistics 2004 report from theAmerican Cancer Society [6],

this year about 563,700 Americans are expected to die of cancer. This report also states

that the 5-year survival rates for lung/bronchial and pancreatic cancer during 1974-1976

were 12% and 3% respectively. Between 1992-1999 the 5-year survival rates were only

15% and 4% respectively. For other forms of cancer the mean increase in the 5-year rate

of survival was 13 percent points. Lung/bronchial and pancreatic cancer have the lowest

5-year survival rates and these rates have been the slowest to improve. One reason is that

these types of cancer are very difficult to treat. The tumors are surrounded by critical

structures, and move considerably when the patient breathes. Thus, knowledge of tumor

location as it moves during breathing is integral to radiation therapy.

Fluoroscopy and computed tomography (CT) scans are typically used in the pre-

treatment planning phase to discern the location of the tumor. Fluoroscopy is an imaging

technique in which X-rays continually strike a fluorescent panel that is coupled to a video

monitor. In a fluoroscopic image tumors lack sufficient contrast with the surrounding tissue,

so in preparation for treatment metal clips are often implanted around the tumor. Since

these clips are radio-opaque they are visible in both fluoroscopic images and CT scans. In

fluoroscopy, they provide a way to observe the tumor as it changes position due to various
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rigid and non-rigid body movements.

During the treatment phase patients receive a dose of high-energy X-ray from a linear

accelerator (linac), an example of which (the Integrated Radiotherapy Imaging System

(IRIS) of Massachusetts General Hospital) is shown in Fig. 1.1. The radiation beam is

emitted by a part of the linac called the gantry which has the ability to rotate around

the patient, and the patient lies on a movable couch underneath the gantry. For lung and

abdominal tumors, radiotherapy is particularly complicated by tumor motion due to patient

breathing. In order to compensate for this, the clinical target volume (CTV), the tumor

itself, is often expanded by a margin to form the planning target volume (PTV), the volume

of the patient which will be irradiated. This is done so that the tumor will receive sufficient

dose but it leads to undesirable radiation of healthy tissuesurrounding the tumor.

Figure 1.1: Example of a linear accelerator. Photo credit: Massachusetts General Hospital.

Usually the linac is accompanied by a fluoroscopic imaging system for pre-treatment
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simulation. When this is the case it is usually a single-panel imager, meaning an image

sequence can only be taken from one viewpoint at a time. Some linac machines have

multiple-panel imaging systems (up to four panels). With these machines it is usually the

case that the imaging system can be used not only for pre-treatment simulation, but for

online imaging during treatment as well. The linac shown in Fig. 1.1 is one such machine,

and Fig. 1.2 shows a diagram of the setup of a machine with a two-panel imaging system.

Additionally, linac machines are also outfitted with a laseralignment system to reposition

the patients in the same way during all sessions. Although setup error is a possibility, we

will assume for the purposes of this thesis that the patient is aligned in the linac machine in

the same way during every session.

Figure 1.2: Diagram of the front (on left) and side (on right)views of the setup of a
linac machine with a two-panel imaging system. Diagram credit: Massachusetts General
Hospital.

The fluoroscopic imaging system mounted on the linac machinecan aid in more

precise irradiation of the patient’s tumor in several ways.It can be used for pre-treatment
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simulation by radiation oncologists to visually observe the location of the patient’s tumor.

This information can be obtained while the patient is holding his or her breath to determine

parameters for breath-hold techniques [14, 39, 34, 27]. These techniques assume that the

patient’s tumor is stationary when the patient is not breathing, and that when the patient is

at a certain level of inspiration the tumor location will be consistently reproducible. During

treatment the patient is brought to the same level of inspiration and the tumor is irradiated

as if it were static. However, patients often cannot hold their breath due to the severity of

their illness.

The fluoroscopic imaging system can also be used in pre-treatment simulation to ob-

serve how the motion of the patient’s tumor moves with respect to some external indicator

of the breathing signal, such as lung air flow or a physical marker placed on the patient’s

abdomen [23, 20, 36, 26, 8, 37]. A correlation between the motion of the tumor and

the external indicator can be established, and then used during treatment to infer tumor

position from the position of the external indicator. In gated radiation therapy, when

the tumor is determined by observation of the external indicator to be within a specified

range of positions, the radiation beam is turned on. When thetumor moves out of this

range the beam is turned off. In gated therapy treatment timebecomes an issue because

the radiation beam is not always on, which could be considered an inefficient use of the

machine, and radiation oncologists would like to speed up treatment in order to attend to

as many patients as possible. Additionally, patient breathing varies over time and this can

cause the correlation between the motion of the external marker motion and the motion of
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the tumor, which gated therapy relies on, to break down.

The linac machines which have fluoroscopic imaging systems that can be used during

treatment allow the tumor to be observed more directly whilethe patient is being irradi-

ated [16, 25, 31, 32, 33, 30, 26]. However, these machines arecostly and very few exist.

The problem is then to devise a way to recover the position of the tumor volume

while the patient is breathing during treatment as accurately as possible so that the PTV

can be reduced and more healthy tissue can be spared. This needs to be accomplished

for scenarios with varying technological capabilities. The contribution of this thesis is to

address the problem of tumor motion during radiation therapy in a rigorous manner by (1)

formulating and analyzing a method for the tracking of fiducial markers in fluoroscopy in

2D, (2) formulating and analyzing a method to model the motion of the fiducials in 3D

when only 2D data is available, (3) analyzing the correlation of the motion of internal

and external fiducial markers, and (4) proposing a method to model motion of the tumor

volume, the CTV, itself.



Chapter 2

Related Work

The methods employed in the proposed system draw from a diverse body of related work

in the fields of medical imaging, radiation therapy, computer vision, computer graphics and

computer science and contribute to these areas. This chapter highlights the most relevant

work in each of those areas.

2.1 Radiation Therapy

There are many different techniques in radiation therapy which seek to address the prob-

lems that tumor motion can cause during treatment. Radiation oncologists want to min-

imize the amount of radiation delivered to healthy tissue around the tumor, while maxi-

mizing the radiation the tumor itself receives. The latter of these two takes precedence,

and in the case of tumors which move because of patient breathing the simplest solution

is to expand the PTV to attempt to compensate for the motion. Essentially, a large enough

volume of the patient is irradiated so that the tumor receives enough dose even if it is

moving. But the greater the range of tumor motion, the more this naive method, which we

will call the standard approach, affects healthy tissue. Clearly, it would be better to have

a way to deliver radiation only to the tumor. Intensity-modulated radiotherapy (IMRT)

is a technique used to deliver radiation conformally to complex 3D target volumes while

6
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sparing surrounding critical structures. However, Giergaet al. [11] have shown that tumor

motion in the abdomen could significantly degrade the planned dose-volume histogram

(DVH) of an IMRT plan. Thus, both objectives will be compromised. The following

methods have been developed with the goal of fulfilling both objectives in mind.

2.1.1 Breath-hold Techniques

Breath-hold techniques seek to eliminate tumor motion entirely. Deep Inspiration Breath-

Hold (DIBH) methods [14, 27] require the patient to achieve alevel of deep inspiration

which is consistently reproducible. This is done through verbal coaching and the use of a

spirometer to monitor the patient’s level of respiration. Active Breathing Control (ABC)

techniques [39, 34], on the other hand, immobilize patient breathing at a certain point in

the respiratory cycle via an occlusion valve.

By stopping the respiration at a reproducible level, the movement of the tumor is

also halted. The patients can be imaged in a pre-treatment phase under the breath-hold

conditions. Then, during treatment the position of the tumor will be known with greater

accuracy and the PTV can be reduced. Breath-hold techniqueshave shown to help decrease

the amount of dose delivered to healthy tissue. However, thepatients undergoing this

treatment are often very ill and their ability to hold their breath is greatly diminished.

Thus, it has been shown that these techniques are not always feasible for the patient [18].

Additionally, these techniques require a longer treatmenttime per patient than the standard

approach because the radiation beam is not always on.
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2.1.2 Gated Therapy

Gating methods allow patients to breathe while receiving radiation, and seek to compensate

for the motion by activating the radiation beam only when thetumor is at a predetermined

position. This position can be detected in several ways. Onemethod involves indirectly

detecting the position by monitoring external markers. Theexternal markers have taken

the form of an infrared light-emitting diode [23] and now more commonly an infrared re-

flective marker [20, 36, 8, 37] which the commercially available Varian Real Time Position

Management (RPM) system makes use of. All of these studies analyzed the relationship

between the motion of the external marker and the motion of the diaphragm in fluoroscopy

and found a strong correlation. Vedam et al. [37] found that based on the respiration signal

produced by the RPM the motion of the diaphragm could be predicted within 1 mm.

In addition to infrared light-emitting diodes Ozhasoglu and Murphy [26] also investi-

gated other external indicators of the breathing signal, namely lead fiducials and lung air

flow, to indirectly determine tumor position. Their study analyzed the correlation between

these signals and the motion of internal fiducials implantedin the tumors.

It has been noted that a phase shift between external and internal motion may occur

under free breathing conditions [7, 20, 36, 37, 26]. Kini et al. [17] showed that improving

the reproducibility of the amplitude and frequency of breathing via coaching is possible

and that this might increase the accuracy of gated therapy.

Position can also be directly detected by means of online fluoroscopic imaging of
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internal fiducial markers [32, 33, 30, 26]. Online imaging removes the problems that

relying on a correlation between internal and external signals can cause. However, the

technology required to image during treatment is only foundin a few hospitals and the

imaging results in the undesired effect of an increase in theamount of radiation the patient

receives.

Gated therapy in general is more time consuming than the standard approach because

the radiation beam is not always on. Due to large patient volume at treatment clinics,

there is pressure to decrease the time of a treatment session, but this comes at the cost of

increasing the size of the gating window (the time when the beam is on) and thus more

healthy tissue is irradiated. This trade-off is difficult tobalance and becomes even more

problematic in the typically longer sessions of IMRT.

2.1.3 Correlation

In most of the indirect gating methods correlation between external and internal motion

was assumed. Although studies have attested to the correlation of an external marker with

2D internal motion of the diaphragm [23, 20, 8, 37] and with 2Dinternal motion of fiducial

markers placed around or in the tumor [26, 12, 10], Ozhasogluand Murphy [26] pointed

out many flaws in the assumptions and analysis techniques of these studies. By imaging

patients for 1-10 minutes they found complexities of the breathing pattern which would

not always be noticed when the imaging was done over the shorter, standard time frame

of 30-60 seconds. Vedam et al. [36] described a method to analyze and compensate for
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one of these problems, phase shift. However, the study done by Ozhasoglu and Murphy

showed that the phase shifts are usually transient or time-changing. This is because the

elastically coupled components (e.g., organs, tissues, internal and external markers) of a

mechanical system which are subjected to a periodic drivingforce (e.g., breathing) and

are experiencing simple harmonic motion, cannot sustain a fixed phase difference. Thus, a

method which does not adapt to changes in the breathing pattern, e.g., [36], could actually

lead to serious errors in estimating marker position.

Ozhasoglu and Murphy pointed out several other often overlooked issues. The place-

ment of the external marker is very important as correlationwith either the chest or the

abdomen yielded different results, and one cannot choosea priori which position would

yield the highest correlation or if any correlation exists at all. Thus, longer periods of

observation are necessary. However, more observational imaging means more radiation is

being delivered to the patient and because of this there is anextreme reluctance to perform

such extended studies.

They also showed that tumor trajectories cannot be assumed to be simple. This neces-

sitates measurement of the motion of the tumor in three dimensions. In practice, this sort

of information is typically sparse. Since tumors cannot be easily tracked in fluoroscopy the

internal fiducials are often tracked and taken to represent the motion of the tumor.

In summary, Ozhasoglu and Murphy found three significant problems with the current

state of gated therapy which utilizes external markers:

1. The observations of breathing motion that are used to set the gating con-
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ditions tend to last 1 min or less, which is not long enough to characterize

respiration or establish that equilibrium conditions exist;

2. The tumor is never observed directly;

3. The gate-triggering algorithm does not accommodate non-stationary aspects

of breathing motion, as for example time dependence of phaseor amplitude

differences.

2.1.4 Image-guided Therapy

Image-guided radiation therapy seeks to address the problems of gating by moving the

radiation beam in synchronization with the tumor. It allowsfor shorter treatment session

times and, when coupled with online imaging, avoids the correlation problem. The method

was first introduced in robotic radiosurgery [1, 28], and later adopted for motion-adaptive

radiotherapy [16, 25, 31].

Motion-adaptive radiotherapy involves synchronously adapting the radiation beam

using a dynamic multileaf collimator (DMLC) to follow the motion of the tumor. Keall

et al. [16] showed that the dose delivered by motion adaptiveX-ray therapy (MAX-T) to

a moving target was equivalent to the dose a static target received from a static beam, and

so the concept is feasible. They propose that the leaf sequence be based upon the motion

of an external breathing signal. However, as Ozhasoglu and Murphy pointed out, this is

more complicated than it seems. Thus, the benefits of using image-guided radiation might

be lost due to the correlation inaccuracies discussed previously. Keall et al. also point out
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the fact that studies usually assume that only the tumor is moving. In reality, however, the

surrounding organs and tissues move as well. This is very important because in planning

treatment it is critical to avoid delivering radiation to certain structures, and if the position

of those structures changes they could be unintentionally irradiated.

Neicu et al. [25] proposed a system called synchronized moving aperture radiation

therapy (SMART). During treatment planning the tumor motion in three dimensions is

measured and used to derive an average tumor trajectory (ATT). In the treatment phase the

tumor motion is monitored (either directly or indirectly) and the beam moves according to

the ATT unless the tumor’s trajectory deviates from the ATT,in which case the beam is

turned off. If the tumor’s trajectory resynchronizes with the ATT, the beam is turned on

again. No attempt is made to change the leaf sequence online,and so this method is in

a way a combination of image-guided therapy and a more sophisticated version of gating.

They acknowledge that this system is then reliant on the regularity of the patient’s breathing

pattern in order to be usefully efficient. Again, according to Ozhasoglu and Murphy this is

not a reasonable assumption. Furthermore, as with the system of Keall et al. [16], using an

external marker might negate the benefits of image-guided therapy.

Sharp et al. [31] introduce a method which does not rely so strongly on such an

assumption. They propose to image the patient in three dimensions during treatment

and to use this information along with prediction to guide the beam. Because there is a

mechanical latency between imaging time and the movement ofthe beam, Neicu et al. [25]

relied on a predetermined form of predictability in the tumor’s trajectory. Sharp et al. [31]
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suggest doing the prediction during each session, and so thepatient’s breathing need not

be perfectly regular from day to day. This technique could bethought of as tailoring the

ATT to a breathing period of a few minutes. Sharp et al. [31] acknowledge that within a

given treatment session they do not update the prediction parameters, and that the longer

the prediction is relied upon the more error will be introduced due to the non-stationary

nature of breathing. Overall their system worked well when the imaging rate was below

10 Hz and the latency of the beam was greater than 33 ms. The lowimaging rate helps

to reduce unwanted radiation delivered to the patient. However, with all techniques that

require online imaging of the patient in three dimensions itis important to keep in mind

that this technology is limited to only a few hospitals around the world.

2.2 Tracking

Direct gating and image-guided methods which use online tracking have additional weak-

nesses. The robustness of tracking software, which is of paramount importance, is often

insufficiently addressed. Furthermore, these systems often rely on only one internal marker

to represent 3D tumor motion, but this is not adequate enoughto accurately capture tumor

motion and cannot account for tumor deformation. Tracking is a relatively new concept in

radiation therapy, but it has been extensively studied in other communities. In this section

we will discuss how radiation therapy has utilized trackingthus far and highlight a few

relevant examples of tracking in computer vision and medical imaging.
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2.2.1 Radiation Therapy

Several groups developed software to track the motion of thediaphragm in fluoroscopy [20,

8, 37]. Ford et al. [8] only examined the motion of the diaphragm in thez-direction.

Although it is true that the motion in thez-direction is typically the greatest, the motion

in the other two directions is often substantial and therefore should not be over looked.

Tracking the motion of the diaphragm is clearly better than having no information about

how the internal structures of the patient are moving. However, the diaphragm is not a

perfect representative of tumor motion, and the tumor must be studied directly according to

Ozhasoglu and Murphy [26]. Additionally, the accuracy of the diaphragm trackers used in

these studies was not reported. Furthermore, Berbeco et al.[2] concluded that 3D imaging

is necessary because of the irregularity and three dimensionality of tumor trajectories, and

because the diaphragm is not tracked in 3D it cannot be an adequate surrogate for tumor

motion.

Shirato et al. [32, 33] developed a system called the real-time tumor tracking radio-

therapy (RTRT) system to track the 3D motion of a 2 mm gold marker implanted in or

near a patient’s tumor at a rate of 30 Hz. They report an accuracy of 1.5 mm. It should

be noted that this is the same system used by Seppenwolde et al. [30], Neicu et al. [25],

and Sharp et al. [31]. The ability to track the marker in 3D is beneficial, however, only one

marker is used to represent tumor motion, and a single markercannot adequately represent

tumor rotation or deformation. To uniquely determine the pose of a 3D object, at least

three points are necessary. Furthermore, determining the relative pose between subsequent
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frames is problematic because the tumor is not a rigid object. The fiducials often do not

move as a rigid body, and according to Murphy [24], using a fourth fiducial so that the pose

problem is overdetermined greatly improves precision. This is because if only one fiducial

moves non-rigidly with respect to the group it can be ignored.

In general, the main problem with these methods is that the tracked internal markers

are still only somewhat representative of tumor motion, anddo not reflect the actual motion

of the tumor.

2.2.2 Computer Vision and Medical Imaging

There has been significant work in the computer vision community on tracking [9], and

we highlight only one method here, the Kalman filter [38]. As many tracking methods,

the Kalman filter uses a type of feedback control to estimate the tracking process. The

filter continually estimates the process state at a given point in time and then obtains

measurements to use as feedback for the estimation. The discrete Kalman filter is used

when the relationship between the process and the measurements, or the process itself,

is linear. However, if the breathing motion is modeled as a sinusoid where amplitude,

frequency, and the DC component must be estimated simultaneously the process is non-

linear. The extended Kalman filter (EKF) can address such non-linear processes. Choosing

the parameters which govern the filter is problematic for this application for two reasons.

First, although breathing is roughly sinusoidal it is non-stationary and can possibly change

drastically if the patient inhales sharply. In this case a filter that is based on a fixed
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amplitude, frequency, and DC component may not be beneficial. Secondly, the time a

Kalman filter needs to choose the parameters accurately would often be unacceptably long,

due to the excess radiation that would be delivered to the patient.

There exist other methods from the field of signal processingto estimate the param-

eters of a sine wave. Fourier analysis is one technique whichcan be used to find the

dominant frequency of a signal. The results of this method are dependent on the frequency

at which the data is sampled as well as the number of samples. Because the data we are

working with is sampled at a relatively low frequency, 30 Hz,for a short amount of time,

5-10 s, the set of frequencies which the method can identify is typically more limited than

desired. Furthermore, radiation oncologists place more weight on the peaks and troughs

of the breathing cycle and consider these points to be more stable. Therefore it would be

desirable to have a method that takes this practice into account. This is why we developed

a method which relies more heavily on the maxima and minima ofthe breathing cycle than

Fourier analysis to estimate the frequency.

There has also been much work done in the medical imaging community on tracking,

in particular in the areas of fMRI and cardiac motion (e.g., [13]) and blood flow analysis

(e.g., [29]). This work is usually done with higher resolution imaging techniques and also

often involves a large amount of prediction. Additionally,these methods often incorporate

intense computation when estimating the motion and so with current computing technology

they cannot feasibly run in real time.
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2.3 3D Modeling, Transformation, and Deformation

Because tracking tumors in 3D is a relatively new area of radiation therapy it is important

to study how 3D information is used in other areas for which 3Dmodeling methods have

been developed. There has been ample work in the computer graphics and the computer

vision communities with respect to 3D representations of objects [9, 15]. Bookstein [5]

proposed to use pairs of thin-plate splines to model biological shape change as deformation.

A thin-plate spline is the 2D analog of a cubic spline. The pair of splines acts as an

interpolation map which relates two sets of landmark points. According to Bookstein,

“The spline maps decompose, in the same way as the spline surfaces, into a linear part

(an affine transformation) together with the superpositionof principal warps, which are

geometrically independent, affine-free deformations of progressively smaller geometrical

scales.” He gives examples how this can be used for biological data, and explains how it

can apply to 3D data.

Another method for dynamic deformable models was proposed by Metaxas [22]. This

method involves using solid primitives which are allowed todeform kinematically as well

as undergo global deformations to produce realistic animations. These animations display

physically correct behavior.
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2.3.1 Medical Imaging

Much work has been done in the medical imaging community withrespect to 3D models.

For the most part this work concerns non-rigid registrationbetween a hand segmented

volume and other scans of the same organ which has undergone achange in position or

shape. In this section we will discuss one recent example. McLeish et al. [21] studied

the effects, namely motion and deformation, that respiration had on the heart via magnetic

resonance (MR) images. They took several scans of each patient at different levels of

inspiration. In one of these scans they segmented the heart volume by hand. Then an

automated procedure was used to calculate a free-form deformation by iteratively altering a

uniform array of B-spline control points which were each 10 mm apart. These deformation

fields were also used to create a motion model. The chief use ofthis work to is to correct

for the artifacts caused by heart motion during free breathing scans. Similar models have

been developed for the liver (e.g., [4]), but the chief aim ofthese models is to help treatment

planning for radiotherapy.

There has also been much work in registering 2D images (X-ray) to 3D images

(MR/CT) [35, 19]. This is usually done for the purpose of image-guided therapy which

allows surgeons to use the pre-operative scans (MR/CT) during surgery. Because the patient

cannot be repositioned in the exact same way as when the pre-operative scan was taken, an

X-ray is often taken during treatment and used to compute a transformation between the

pre-operative and intra-operative coordinate systems. This allows the surgeon access to the

high quality MR/CT data which would not otherwise be available during surgery.
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2.4 Summary

There has been significant work in the radiation therapy community [14, 39, 1, 28, 34, 27,

32, 33, 23, 16, 20, 36, 8, 30, 26, 37, 25, 12, 10, 31] which attempts to address the problems

that the motion of lung and abdominal tumors during treatment can cause. Breath-hold

techniques [14, 39, 34, 27] seem to make the tumor reproducibly static, but they are often

too difficult for the patient to endure. Studies of indirect gating methods [23, 20, 36, 8,

26, 37, 12, 10] have shown correlation between internal markers and external indicators of

the breathing signal over short (30 s) periods of observation. However, these studies only

examine internal marker motion in two dimensions. The motion of the internal markers

must be studied in 3D and longer periods of observation are required. Gating and image-

guided methods [1, 28, 32, 33, 16, 30, 26, 25, 31] which use online tracking give good

estimates of internal marker position in 3D, but they are often to costly too implement and

can expose patients to excess radiation. Furthermore, these methods often rely on only one

internal marker to represent tumor motion [16, 25, 31].

Tracking has been more extensively studied in the computer vision community. Al-

though the extended Kalman filter has the capability to estimate non-linear processes like

breathing, it might not be beneficial in the case where breathing is modeled as a sinusoid

and the parameters for amplitude, frequency and the DC component are fixed.

There has also been much work in the area of 3D modeling [5, 22,4, 21, 35, 19], but it

has yet to be used in relation to internal marker tracking in radiation therapy. Additionally,
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it is not feasible to apply some of the methods to the problemsdiscussed in this thesis

because the methods can require more information than is available from the fluoroscopy.



Chapter 3

Materials and Methods

Fluoroscopic imaging provides a two-dimensional (2D) projection of the density values of

the imaged body. The surgically implanted internal markers(clips) can be detected and

tracked in the fluoroscopic image sequences since metal is radio-opaque and has a higher

density than the surrounding tissue.

During treatment planning, radiation oncologists typically request fluoroscopy from

two views, the Anterior-Posterior (taken along they-axis) and the Lateral (taken along the

x-axis) views. Because these views are orthogonal, we can combine the tracking data to

recover how the positions of the clips change in three dimensions (3D) over time. The setup

of the imaging system is such that the Anterior-Posterior and Lateral views share thez-axis

of the respective images, which is the Cranio-Caudal axis ofthe patient, and the isocenter

of the patient is at the center of the image (Fig. 3.1).

x

(Left−Right)

y

(Cranio−Caudal)

z

(Anterior−Posterior)

Figure 3.1: Illustration of the coordinate system of fluoroscopic views. The patient is lying
on his or her back with the head towards the positivez-coordinate axis.
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During treatment planning, radiation oncologists also request a CT scan. The tumor

is then contoured manually on the CT by the radiation oncologists. This expert knowledge

can be used to our advantage by first determining a relationship between the clips, which

are visible in the scan, and the contour. Each clip moves rigidly but the collection of clips

generally moves non-rigidly with respect to itself. If we have a sufficient number of clips,

we can infer from the rigid motion of the clips in 3D the non-rigid motion of the tumor

volume in 3D by using the contour and clips to generate a modelof the motion.

The motion of the clips observed in the fluoroscopy along withthe CT scan tumor

contour are the inputs from which a model of the 3D motion of the patient’s tumor can be

built for use during treatment. From the radiation oncologists’ standpoint the overview of

the system is shown in Fig. 3.2.

Fluoroscopic Image Sequences,
                 and CT Scan

        Obtain Two Orthogonal Build Model of Tumor Motion
      Due to Patient Breathing

Use Model During
       Treatment

Figure 3.2: High-level overview of goals of method from a radiation oncologist’s point of
view.

One of the goals of this thesis is to develop a system that willwork in hospitals

with different technological capabilities. The main difference in technology is the type of

fluoroscopic imaging system which is mounted on the linac machine. If the imaging system

has multiple panels which can be used simultaneously, then the location of the clips in 3D

can be directly estimated from the fluoroscopy. This information can then be immediately
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coupled with the tumor contour to produce a model of 3D tumor volume motion. This

model can then be either correlated with external markers for use in gated therapy, or during

image-guided radiation when online imaging is available. Most linac machines, however,

have only single-panel imaging systems which cannot be usedduring treatment. This

means that the 3D position of the internal markers cannot be directly estimated. Instead,

we propose to estimate a model of the 3D clip motion from two sequentially obtained

orthogonal fluoroscopic image sequences. Although an internal marker’s motion in the

z-direction is not exactly the same in both image sequences, it is typically similar. This

is because each of the orthogonal fluoroscopic image sequences (Anterior-Posterior and

Lateral) are taken only minutes apart, during which the patient’s breathing and anatomy do

not change drastically.

When only sequentially obtained fluoroscopic image sequences are available, certain

assumptions must be made in order to build a model. Generally, breathing is well described

by a sinusoid for short sequences of time when the patient is breathing regularly. Because

the modeling algorithm will be used on sequences of approximately 30 s we believe this is

a reasonable initial assumption, and so we estimate the parameters of a sine wave model

based on the two sequentially obtained fluoroscopic image sequences. The objective is to

model the average and maximum range of 3D clip motion. Once this is done, the tumor

contour can be used to build a final model of the 3D tumor volumemotion. This can then

be correlated with external markers for use in gated therapy.

The model building section of the system can therefore take two paths. Either the 3D
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position of the internal markers can be directly estimated if a multiple-panel fluoroscopic

imaging system is available, or the 3D position of the internal markers must first itself be

modeled if only a single-panel imager is used. The overall view of the steps which the

system takes is shown in Fig. 3.3.

2D Tracker

      Orthogonal Fluoroscopy Videos CT Scan

Gating Parameters

Estimate 3D Clip
Postion Directly

Correlate with External Markers

with Tumor Contour
Register Clips

or Maximum 3D Clip Motion
Calculate Model of Average

Calculate Model of Average

Beam−guided Parameters

or Maximum 3D Tumor Volume Motion Tumor Volume Motion
Calculate Model of 3D

Figure 3.3: Detailed overview of method. Dotted lines indicate steps taken when a
multiple-panel fluoroscopic imaging system is available. Dashed lines indicate steps taken
when only a single-panel imaging system can be used. Solid lines are steps taken in both
cases. Gray boxes have not yet been implemented.

3.1 2D Clip Tracking

Tracking the motion of the clips implanted in the patient canbe difficult. Although the

metal which the clips are made of has a higher density than thestructures and tissues of the

body, the clips are not always easily visible. This is because the surrounding tissue may

also appear dark at times or contain edges due to high-density bone structures such as the
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spine (Fig. 3.4) and the images themselves can become dark during inhalation (Fig. 3.5).

Figure 3.4: Subsection of a fluoroscopic image containing a section of the spine with the
vertebrae edges indicated by white arrows and a surgical clip marked by a white rectangle.
Clip and spinal section have similar intensity values.

Below the real-time algorithm for tracking the 2D motion of aclip in fluoroscopy

which is based on previous work done by our group [3] is described. The following proce-

dure is performed in parallel for all of the clips in a given fluoroscopic image sequence.

3.1.1 Initialization

The tracking method is initiated by manual selection of a rectangular regionr containing a

clip in an initial fluoroscopic imageI. In order to find a minimal rectangle containing each

clip, the largest “dark” connected component in each regionis found by first binarizing

the image according to an automatically computed ptile threshold for the region. A ptile

threshold is one in which a threshold is chosen such thatp% of the image area has grayscale

values less than the threshold, and the rest of the image areahas grayscale values greater

than the threshold. The percentagep is fixed, and the threshold is computed online.
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Figure 3.5: Two subsections of fluoroscopic images taken during inhalation and exhalation,
respectively, clips marked by white rectangles. The image on the right is much darker, and
the clips have changed position relative to each other.

When manually selectingr users are instructed to make the rectangular region as small

as possible. Given this instruction and the average size of aclip (5 mm), it was found that

the algorithm performed well whenp was set at 20%. The rectangular region is used as a

(w × h) grayscale templateT of the clip. The location of the template inI provides the

starting coordinates for tracking the clip in subsequent fluoroscopic frames.

3.1.2 Tracking Algorithm

The normalized correlation coefficient is used to find the position of the clip in subsequent

image frames. The value of the normalized correlation coefficient at position(x′, y′) is

RI,T (x′, y′) =

∑

x,y(I(x′ + x, y′ + y) − Ī)(T (x, y) − T̄ )
√

∑

x,y(I(x′ + x, y′ + y) − Ī)2
∑

x,y(T (x, y) − T̄ )2
, (3.1)
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whereT̄ andĪ are the respective mean intensities within the template andimage window.

The tracking algorithm searches for the best match of the clip templateT with a region of

the imageI. This is done by shifting the templateT through the image to various points

(x′, y′) and correlating it with each(w × h) sub-image ofI. The location(x′, y′) which

maximizesRI,T is taken to be the new clip location.

Searching over all positions(x′, y′) in I is computationally expensive. Because we

know that the clips do not move much from frame to frame, it is possible to restrict the

size of the sub-region ofI which will be searched. The apparent velocity of the clip’s

movement in the image is calculated to predict the clip location in the next frame. Velocity

(u, v) = (dx
dt

, dy

dt
) is approximated in terms of the rate of change inx andy from the past

frame to the current frame:(ut+1, vt+1) = (xt − xt−1, yt − yt−1). We assume that the

velocity is constant for two consecutive frame pairs, and use (ut+1, vt+1) as an offset from

the current position(xt, yt) to determine the center(xt + ut+1, yt + vt+1) of a5 × 5 region

of interest (ROI) to search over in the subsequent frame,t + 1. When the clip reaches a

minimum or maximum of the breathing cycle in its trajectory and reverses its direction,

this assumption does not negatively affect the tracking. Because the clip typically does

not move by more than one pixel per frame, the clip will remainwithin the5 × 5 search

window. By not weighting the ROI with probabilities as a Kalman filter would, all locations

within the ROI are equally valid and so the correct position will not be negatively weighted

because it is in seemingly violation of the model. Within a frame the velocity will be

reversed to reflect the new trajectory.
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3.2 Estimated Model of 3D Clip Motion

The 2D tracking software produces a set of time-indexed 2D coordinates for each fluoro-

scopic view. The tracker output of two sequentially obtained fluoroscopic image sequences

will then give us four trajectories:x(t), y(t) and two trajectories forz(t). In general the

algorithm works by first processing the twoz(t) trajectories. To calculate a model for one

of these 1D trajectories, we compute the DC component, amplitude and frequency of a sine

wave which models this motion. In order to do that, we need to find the maximum and

minimum of each breathing cycle. After the model is computedfor bothz(t) trajectories,

the models of other two trajectoriesx(t) andy(t) are calculated. Finally, the results of

the calculations of the 1D models for all four trajectories are combined to form a final 3D

model of the average or maximum range of motion of the clip.

We present the description of the algorithm in three parts (1) finding the maximum

and minimum of each breathing cycle for a given trajectory (2) computing the DC compo-

nent, amplitude and frequency of a sine wave which is a 1D model a given trajectory (3)

combining the four 1D models into a 3D model.

3.2.1 Finding the Maximum and Minimum of Each Breathing Cycle

It is difficult to determine the maximum and minimum of a breathing cycle for several

reasons. First, there is often no change of position of the clip in subsequent frames of the

time-indexed trajectory because of the rests a person takesat full inhale and exhale. Sec-
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ondly, the clips move slowly and the motion appears as eitherno change or a small change

in the image. These conditions result in a step-like discretizing effect in the trajectory,

and makes the moments in time when the maximum and minimum of each breathing cycle

occur difficult to identify.

After a smoothing operation the maximum and minimum of each breathing cycle can

be identified uniquely even if their positions in time were not originally unique (Fig. 3.6).

The trajectory is smoothed using a 1D Gaussian kernel with a support ofj=10 frames (or

1/3 second) and a standard deviationσ=1 frame. This kernelG is generated by constructing

an array of2j + 1 entries, whoseith value is:

Gi =
1

σ
√

2π
exp

(

−(i − j − 1)2

2σ2

)

. (3.2)

Because a typical human breathing cycle is about 150 frames (or 5 seconds), we chose a

support of 10 frames to adequately smooth over the plateaus which result from the stepping

effect in the trajectory.

After smoothing, a modified sliding-window technique is applied to find the maximum

and minimum of each breathing cycle of the smoothed trajectory z′(t) as follows. The

global maximumgmax and minimumgmin of the entire data set are determined. A threshold

τ is set to be equal to 110% of the difference betweengmax andgmin:

τ = 110% · (gmax − gmin). (3.3)
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Figure 3.6: A close-up view of one of the peaks of the breathing cycle. The original
trajectory produced by the 2D tracker (red) has several instances of the maximum, but after
smoothing (green) only one instance of the maximum exists.

This threshold represents an aggregate distance counter (Fig. 3.7). By making the threshold

slightly greater than the largest amount of distance between gmax andgmin we ensure that

we are thoroughly searching the trajectory because the distance searched is greater than the

distance traversed in one half cycle. Also, we are providingroom for some jitter in the data.

The initial point of the data set could be anywhere in the breathing cycle, so the algo-

rithm first determines if the patient is in an inspiration or expiration phase by comparing

the first point of the trajectoryz′(0) with a point 20 frames later in the trajectoryz′(20).

We choose 20 frames here because it is far enough to overcome any jitter in the data. If

z′(20) > z′(0) then the patient is in an inspiration phase and the algorithmwill search for a

maximum. Otherwise the patient is in an expiration phase andthe algorithm will search for

a minimum. The algorithm steps along the trajectory and keeps track of the distanced (in

thez dimension) travelled, by aggregating the difference between subsequent pointsz′(t)
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Figure 3.7: An illustration of how the modified sliding-window technique works with the
one dimensional trajectory is shown in red. In an initial phasegmax andgmin are found, and
the thresholdτ is computed. In the second phase the maxima and minima of the breathing
cycles are found. Here the aggregate distance count (green)begins at the point where
the most recently processed local maximum was found and endswhen the thresholdτ is
reached. It represents the amount of distance searched overfor the next local minimum.

andz′(t + 1):

dk = dk−1 + |z′(t + 1) − z′(t)|. (3.4)

When searching for the maximum of a breathing cycle, the algorithm records the time index

tc, the value of the pointz′(tc), and the distance travelleddtc when its value exceeds the last

recorded valuez′(t′c) of a candidate for the maximum. Whend > T the information about

the last recorded candidate for maximum is reported. The distance is updated as follows:

dk = dk − dtc . This has the effect of resetting the aggregated distance counter to the time

the maximum occurred. Then, the algorithm begins looking for a minimum. The procedure

for this is identical, except that the algorithm records thetime index and value of a point

when its value is less than the last recorded value.
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This procedure yields the time indices of the maxima and minima l1,. . .lm, wherem

is the total number maxima and minima. These time indices canthen be used to index into

the original unsmoothed trajectoryz(t).

3.2.2 Calculating the Parameters of a 1D Model

After the maxima and minima of the breathing cycles have beenidentified, the algorithm

calculates the parameters of a sine wave which models the data. We can calculate a model

of both the average motion and the worst case (maximum) motion. The only difference

in these models will be their amplitude; the DC component andfrequency will remain

the same. Assuming that a maximum is found first for the sake ofnotation, the average

amplitudeaavg is given by half the difference between the average maximum and the

average minimum of the breathing cycles:

aavg =
1

m

(

m
∑

i=1

z(l2i−1) −
m
∑

i=1

z(l2i)

)

. (3.5)

The maximum amplitude is given by:

amax =
gmax − gmin

2
. (3.6)

The periodρ is given by twice the average time of a half cycle:

ρ =
2

m − 1

m
∑

i=2

(li − li−1) , (3.7)
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The frequencyf is the inverse of the period:f = 1/ρ. We can determine the DC

componento of thez motion by finding the average value

o =
1

lm−1 − l1

lm−1
∑

i=l1

z(i), (3.8)

over all points in the trajectory, whereS is the number of frames in the trajectory.

Finally, we can then define the average or maximum pattern ofz motion as a sine wave

given by:

o + a sin(2πft), (3.9)

wherea is eitheraavg or amax.

We assume that each clip follows a roughly linear trajectory, and so the maximum and

minimum of each breathing cycle for the trajectories of the motion in thex-direction and

they-direction must occur at the same times as those of the motionin thez-direction. Thus,

when calculating the models for the motion in thex-direction and they-direction, we do

not need to recalculate the maximum and minimum of each breathing cycle. It is sufficient

to reuse the time indices calculated for the model of the motion in thez-direction, evaluate

x(t) andy(t) at the those times, and perform the calculations outlined above. This also

ensures that the model will remain in phase with itself.
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3.2.3 Calculating the Parameters of the Final 3D Model

After the 1D models are computed for the four trajectories wehave four sets of parameters:

{ox, ax, fx}, {oy, ay, fy}, {oz1, az1, fz1}, {oz2, az2, fz2}. These parameters are processed

together to calculate the final 3D model as follows. The corresponding parameters of the

two models of the motion in thez-direction are averaged. The frequency parameter of

the models of the motion in thex-direction and they-direction are updated to use the

average frequency calculated for the model of the motion in thez-direction. This results in

a parametric equation which describe a model of the motion ofthe clip in 3D:

m(t) = o + a sin (2πft) , (3.10)

whereo =
(

ox, oy,
oz1+oz2

2

)

, a =
(

ax, ay,
az1+az2

2

)

, andf =
(

fz1+fz2

2
, fz1+fz2

2
, fz1+fz2

2

)

.

Fig. 3.8 shows the range of motion in an actual fluoroscopic image that the estimated

model of average 3D motion yields.

3.3 Fourier Analysis

To evaluate the modeling algorithm Fourier analysis was used to estimate the dominant

frequency for each of the 1D trajectories. A discrete Fast Fourier Transform was used to

do this:

F (k∆f) =

Ns−1
∑

n=0

f(n∆t)e−i(2πk∆f)(n∆t), (3.11)
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Figure 3.8: Two subsections of fluoroscopic views of patientJack (Anterior-Posterior on
the left, Lateral on the right) taken during the peak of a breathing cycle (patient is in full
inspiration). Clips are marked by rectangles. Clip 3 in the AP view and clip 1 in the Lateral
view are the same clip. The average range of motion from the estimated 3D model is shown
in red.

for k = 0, 1, 2, . . . , Ns − 1, whereNs is the number of discrete samples,Ts is the total

sampling time,∆t = Ts/Ns, andfs = N/T is the sampling rate of the original signal.

The dominant frequency was obtained by finding the frequencywith the highest magnitude

in the firstNs/2 samples of the spectrum (only the firstNs/2 frequencies are useful due

to the Nyquist criterion). It should be noted that this implementation of the Fast Fourier

Transform restrictsNs to powers of 2.

3.4 Correlation with External Markers

In previous work [12, 10], we showed that the 2D motion of internal markers correlates

with the motion in they-direction of a set of external markers. This study, as well as the

previous one, differs from other work dealing with externalmarkers [23, 20, 36, 8, 26, 37]

in that instead of having only one external marker, we use a chain of beads, each of which

is a single marker, placed on the patient’s abdomen. This allows us to examine the external
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motion at several different points on the abdomen of the patient simultaneously. Fig. 3.9

shows a fluoroscopic image containing both the internal and external markers.

Figure 3.9: Lateral fluoroscopic image of patient Nancy withthree external markers, which
are beads marked 3, 4, and 5, resting on the patient’s abdomen(right), and two internal
markers (clips) marked 1 and 2.

We have extended our previous work [12, 10] to examine how the3D estimated

average motion of a clip is correlated with the motion in they-direction of an external

marker. The correlation is calculated between the motion ofa clip in each of the three

dimensions and the motion of the external marker in they-direction. The chain of beads

results in many external markers, and for this study we chosethree beads on the chain with

which to correlate the internal marker. The correlation is found by comparing the positions

of the external and internal marker at each point in time, andfinding the regression line

which fits that data.
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Results

Fluoroscopic videos were collected with a Varian Ximatron radiotherapy simulator with a

resolution of640 × 480 pixels with 8 bits per pixel at 30 frames per second. The CT scans

were taken with a General Electric Lightspeed scanner at 140kvP. The computer used to

process the data was an Intel Xeon 1.7 GHz with 1 GB RAM and an ATI All-In-Wonder

9800 graphics card.

4.1 2D Clip Tracking

Examples of trajectories produced for four patients for both the Anterior-Posterior and

Lateral views are shown in Fig. 4.1.

A ground truth study involving 5 patients was done. Ground truth was established for

the motion of five clips, one per patient, using the Anterior-Posterior views. We manually

recorded the centroid of each clip for every tenth frame of the image sequence, or every

1/3 second. The ground truth positions were then compared with the trajectory produced

by the 2D tracker. Table 4.1 shows the averages and standard deviations of the root mean

squared (RMS) and the maximum error in centroid position of each clip’s motion in the

x-direction and thez-direction. On average, the mean and standard deviation of the RMS

error of detecting each of the 10 motion trajectories were under 0.5 mm (≈ 1 pixel).

37
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Figure 4.1: 2D motion of clips of four patients in Anterior-Posterior and Lateral Fluo-
roscopy.
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Table 4.1: Clip Localization Error

Patient Direction of Motion Root Mean Squared Error Max
(RMS) Error

Mean (mm) Std. Dev. (mm) (mm)
Alice AP View x-direction 0.61 0.58 2.31
Alice AP View z-direction 1.21 0.58 2.00
Doug AP View x-direction 0.40 0.15 0.74
Doug AP View z-direction 0.39 0.38 1.50
Eve AP View x-direction 0.25 0.25 0.74
Eve AP View z-direction 0.23 0.26 1.00

Frank AP View x-direction 0.25 0.23 0.74
Frank AP View z-direction 0.41 0.33 1.00
Gary AP View x-direction 0.48 0.32 1.48
Gary AP View z-direction 0.47 0.24 1.00

Average 0.47 0.33 1.25

4.2 Estimated Model of 3D Clip Motion

This study involved 2 patients. In order to evaluate the accuracy of the estimated model of

average 3D motion we compared the trajectories of average motion with the corresponding

four original trajectories obtained from the 2D tracker (see Fig. 4.2). The 1D estimated

model parameters for the two patients are shown in Figs. 4.2 and 4.4 and the final 3D

estimated model parameters are shown in Figs. 4.3 and 4.5.

Table 4.6 shows the averages and standard deviations of the root mean squared (RMS)

and the maximum error in centroid position of each clip’s motion in thex-direction, the

y-direction, and thez-direction. On average, the mean and standard deviation of the RMS

error of the model were under 0.3 cm = 3.0 mm (≈ 7 pixels). The periodρ is included for

the sake of comparison.
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Table 4.2: 1D Estimated Model Parameters: Patient Jack

x z1 y z2

o (mm) 4.16 0.02 4.17 0.35
a (mm) -0.18 0.69 -0.17 0.53
ρ (s) 4.46 4.46 4.29 4.29

f (Hz) 0.22 0.22 0.23 0.23

Table 4.3: 3D Estimated Model Parameters: Patient Jack

x y z

o (mm) 4.16 4.17 0.18
a (mm) -0.18 -0.17 0.61
ρ (s) 4.38 4.38 4.38

f (Hz) 0.23 0.23 0.23

Table 4.4: 1D Estimated Model Parameters: Patient Nancy

x z1 y z2

o (mm) -7.36 -1.36 -1.72 -1.55
a (mm) 0.10 1.08 -0.46 0.97
ρ (s) 5.27 5.27 4.35 4.35

f (Hz) 0.19 0.19 0.23 0.23

Table 4.5: 3D Estimated Model Parameters: Patient Nancy

x y z

o (mm) -7.36 -1.72 -1.45
a (mm) 0.10 -0.46 1.02
ρ (s) 4.81 4.81 4.81

f (Hz) 0.21 0.21 0.21
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Figure 4.2: 2D motion of clips of 2 patients (red) and their respective estimated models of
average 3D motion in Anterior-Posterior and Lateral Fluoroscopy (green).

Table 4.6: 3D Estimated Model Error

Patient Direction of Motion Root Mean Squared Error Max
(RMS) Error

Mean (cm) Std. Dev. (cm) (cm)
Jack Lateral View y-direction 0.01 0.02 0.24
Jack Lateral View z-direction 0.07 0.11 0.58

Jack AP View x-direction 0.02 0.03 0.14
Jack AP View z-direction 0.25 0.31 1.87

Nancy Lateral View y-direction 0.33 0.27 1.23
Nancy Lateral View z-direction 1.49 1.22 5.43

Nancy AP View x-direction 0.01 0.01 0.06
Nancy AP View z-direction 0.27 0.38 2.37

Average 0.30 0.29 1.49
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Tables 4.8 & 4.7 show comparisons between the frequencyf estimated by the model-

ing algorithm and the dominant frequency estimated by Fourier analysis for each of the 1D

trajectories.

Table 4.7: 1D Frequency Parameter Comparison: Patient Jack

Estimation Method f (Hz)
x z1 y z2

Modeling Algorithm 0.22 0.22 0.23 0.23
Fourier Analysis 0.23 0.23 0.21 0.21

Table 4.8: 1D Frequency Parameter Comparison: Patient Nancy

Estimation Method f (Hz)
x z1 y z2

Modeling Algorithm 0.19 0.19 0.23 0.23
Fourier Analysis 0.23 0.23 0.21 0.21

4.3 Correlation With External Markers

This study involved 2 patients. The only 3D motion data currently available to us that

includes external markers is the 3D estimated model of average motion. Fig. 4.3 shows the

trajectories of the external markers in they-direction along side the 3D estimated models

of average motion in each dimension.

We studied the correlation between the 3D estimated model ofthe average motion of

the clip in each dimension and the motion in they-dimension of each of three markers

for two patients. By way of comparison, we included the correlation between the tracked
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motion of the clip in two dimensions and the external markersas well. The correlation was

measured by plotting the motion of the internal marker against the motion of the external

marker and then computing the linear regression line which fits the data. The sum of the

squares of the vertical deviations from the line (R2) was used as the measure of correlation.

Table 4.9 summarizes the results and Figs. 4.4 and 4.5 show the correlation plots for both

the tracked motion and the 3D estimated model of the average motion for the two patients.

The correlation with the tracked motion was 0.88 on average while the correlation with

the 3D estimated model of the average motion was 0.53. The slopes of the regression lines

are included for purposes of comparison. For the patient Jack, the slopes of the regression

lines of the correlation which uses the 3D estimated model ofaverage motion are very

similar to the slopes of the regression lines of the correlation which uses the tracked motion.

However, for the patient Nancy, this is not the case.
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Figure 4.4: Motion in they-direction of external marker 2 (blue diamonds), 3 (pink
squares), and 4 (yellow triangles) of patient Jack plotted against the 3D average motion
in the x, y and z-directions of the estimated models (A, C, E) and against thetracked
motion in they andz-directions (B, D).
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Figure 4.5: Motion in they-direction of external marker 3 (blue diamonds), 4 (pink
squares), and 5 (yellow triangles) of patient Nancy plottedagainst the 3D average motion in
thex, y andz-directions of the estimated models (A, C, E) and against thetracked motion
in they andz-directions (B, D).
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Table 4.9: External Marker Correlation

Patient Direction External Marker R2 Slope
of Clip Motion Number Tracked Modeled Tracked Modeled

Motion Motion Motion Motion
Jack x-direction 2 - 0.64 - 1.34
Jack x-direction 3 - 0.62 - 1.75
Jack x-direction 4 - 0.58 - 1.70
Jack y-direction 2 0.82 0.64 1.32 1.27
Jack y-direction 3 0.80 0.62 1.71 1.65
Jack y-direction 4 0.71 0.58 1.62 1.61
Jack z-direction 2 0.94 0.64 -4.14 -4.58
Jack z-direction 3 0.90 0.62 -5.34 -5.96
Jack z-direction 4 0.83 0.58 -5.14 -5.82

Nancy x-direction 3 - 0.41 - 0.46
Nancy x-direction 4 - 0.35 - 0.27
Nancy x-direction 5 - 0.32 - 0.15
Nancy y-direction 3 0.86 0.41 3.11 -2.16
Nancy y-direction 4 0.93 0.61 2.10 -1.36
Nancy y-direction 5 0.95 0.88 1.24 -0.60
Nancy z-direction 3 0.91 0.41 -6.34 4.79
Nancy z-direction 4 0.97 0.35 -4.24 2.85
Nancy z-direction 5 0.99 0.32 -2.51 1.60

Average 0.88 0.53



Chapter 5

Discussion and Conclusion

Our method can be used in settings where the latest technology, i.e., simultaneous orthog-

onal fluoroscopy, is not available. During the course of thisstudy it became apparent that

equipment shortcomings were not the only problem we faced during the data acquisition

phase. Because work in this field is relatively new, radiation oncologists do not always

collect data which is as usable to us as possible (e.g., a given clip is not always visible in

both fluoroscopic image sequences). It is often not clear if the data is usable until after it

has been analyzed. The possibilities of the kinds of information which can be recovered

are still emerging. One goal of our work is to develop and demonstrate the ways in which

information can be recovered and establish a dialogue with the radiation oncologists to

explain ways to improve data collection methods.

5.1 2D Clip Tracking

Estimating the location of a tumor accurately is crucial in providing effective and safe

radiation therapy. The ground truth study of our clip tracking system shows that the

average RMS error and standard deviation is 0.47 mm and 0.33 mm, respectively. This

is a considerable improvement of the 1.5 mm error of the RTRT system [32, 33]. This is

underscored by the fact that the internal markers our systemwas tested on were typically

48
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5 mm long while the RTRT system uses 2 mm markers. An error of 1.5 mm when tracking a

2 mm object misses the object by 75%, whereas an error of 0.47 mm when tracking a 5 mm

object only misses the object by 9.4%. The RTRT system uses1024 × 1024 pixel images

with 8 bits per pixel. Whereas our system was only tested on a resolution of640 × 480

pixels with 8 bits per pixel. Our system achieves more accurate performance than the RTRT

system on lower resolution data, and would most likely do even better given higher quality

images. Additionally, our method has the capability to track more than one marker which is

necessary for designing a method to recover 3D tumor position and deformation accurately.

The RTRT system, which in the reported studies did not use tracking information for

multiple internal markers for the purpose of estimating tumor position, is currently used

by most of the groups doing internal marker tracking [32, 33,30, 25, 31].

Although error statistics are given for the RTRT system, there is no detailed expla-

nation of how the error was calculated [32, 33, 30, 25, 31]. Bymanually marking clip

position in the images and comparing that with tracked positions we have explained how

we calculated the error of our system. If the information produced by the tracker is the first

step of a system which models tumor motion its error should beanalyzed. By calculating

the error of the measurements which the rest of our system relies on we can give a more

accurate estimate of how reliable the system will be overall.
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5.2 Estimated Model of 3D Clip Motion

Due to regulations of Massachusetts General Hospital we were unable to gather additional

fluoroscopic data from the same patients with which to compare the model, but we were

able to assess if the assumptions made by the modeling algorithm were reasonable. This

was done by comparing the frequency parameter obtained by the modeling algorithm with

the dominant frequency obtained from Fourier analysis and by comparing the model with

the trajectories used to produce it.

The Fourier analysis yielded similar dominant frequenciesof the 1D trajectories to the

modeling algorithm (see Tables 4.8 & 4.7). The fluoroscopy istaken at 30 Hz for a short

amount of time, 5-10 s. This means that there are usually between29 and210 samples.

When using Fourier analysis the set of frequencies is then discretized with an interval

between 0.06 Hz and 0.03 Hz. The dominant frequency resulting from the Fourier analysis

differed from the frequency resulting from the modeling algorithm by at most 0.04 Hz and

by as little as 0.01 Hz. If the dominant frequencies resulting from the Fourier analysis were

used to compute the frequency for the 3D model the result would only be 0.01 Hz different

from the result produced by using the frequencies obtained by the 1D modeling algorithm.

Our algorithm places more weight on the maxima and minima of the breathing cycles

because radiation oncologists rely on these points more heavily. However, the results

from the Fourier analysis are very similar, so it is difficultto assert which method is more

successful. The modeling algorithm might perform better ifthere were even fewer samples
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because the Fourier method would have even larger intervalsbetween possible frequencies.

Longer imaging times might be able to confirm which method is more accurate. Addition-

ally, the two dominant frequencies of the 1D trajectories ina given fluoroscopic sequence

computed with Fourier analysis are the same. This confirms that our assumption that they

are the same is reasonable.

For one patient, Jack, the motion of a clip in two sequentially obtained fluoroscopic

image sequences was similar enough to allow us to produce a useful model of the 3D

motion of the clip. However, for the patient Nancy, the modeling algorithm did not per-

form as well. In order to recover 3D motion of a clip directly or to calculate a model to

describe the motion it is necessary that the clip be present in both of the orthogonal image

sequences. However, for all nine of the patients in this study, this condition only held

for two patients. Even for those two patients, only one clip of each patient was visible

in both image sequences. Thus, we had very limited data with which to test our 3D clip

motion modeling algorithm. One goal of our work is to motivate the radiation oncologists to

provide more usable data. It is desirable for the clip to be visible in both image sequences,

and so we hope that this work will open a dialogue between the fields of computer vision

and radiation therapy to increase the availability of usable data for testing. With more data

we could hopefully determine if the model will work during subsequent treatment sessions

and to improve it if necessary. Allowing the patient to undergo a little extra radiation during

observation will hopefully result in a large reduction of radiation delivered to healthy tissue

during treatment because the tumor can be more accurately located.
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With respect to the data that the system was tested on, the RMSerror of 3.0 mm

although reasonable is not ideal. If we look only at the RMS error for the estimated model

of 3D clip motion for the patient Jack, we see a dramatic decrease to only 0.8 mm. If

the original trajectories from which the models were produced are examined it is clear

that the sequentially obtained image sequences of the patient Jack are better suited for

the modeling algorithm than that of the patient Nancy. This is because the patient Jack

breathed at approximately the same frequency during both imaging times, 0.22 Hz and

0.23 Hz. However, the patient Nancy breathed noticeably faster in the Lateral image

sequence, 0.23 Hz, as compared to the Anterior-Posterior sequence, 0.19 Hz. If a person

breathes at a different rate this can alter the pattern of motion. This result indicates that

breath coaching might be useful if a 3D model of motion is desired for treatment planning.

If breath coaching is not a possibility, another way to obtain a more accurate model

could be to omit outlier breathing cycles when computing theparameters of the 3D model.

The breathing pattern of the Anterior-Posterior image sequence of the patient Nancy had

two breathing cycles with longer periods than the other breathing cycles of the image

sequence. If these were omitted in calculating the 3D model,it might increase the accuracy

of the model. However, this might not be a safe assumption. When there are so few

breathing cycles to work with (in this study the lowest was 4)there is sometimes not enough

information to accurately classify a breathing cycle as an outlier. Longer observation

periods would be one way to solve this problem. For the patient Nancy it seemed that the

main cause of the problems with the model were not caused by outlier breathing cycles but
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rather the fact that the two image sequences had significantly different average frequencies

as mentioned before.

We hope to see if the model will work well for additional patients when the data

becomes available. If so, the next step would be to test the model on subsequent fluo-

roscopy sessions to evaluate the day to day accuracy of the model. Hospitals do not like

to do more imaging than they deem necessary because it involves more patient risk due

to the increase of radiation received. However, if the modelis successful for additional

patients, the potential to more accurately discern the tumor position during treatment might

be justification enough to warrant additional pre-treatment imaging to test the validity of

the model from day to day so that it can be cleared for use during treatment.

5.3 Correlation with External Markers

The study of the correlation between the motion of the external markers and the estimated

average 3D motion of the internal markers was likewise limited to two patients. The results

were nonetheless informative. The study yielded information about correlation between the

motion of internal and external markers and about the modeling algorithm. The correlation

between the motion of the external markers and the 3D estimated model of the average

motion for patient Jack, which was 0.61, was less than the correlation with the tracked

motion, which was 0.83. This is not surprising since the model is a more generalized

version of the tracked motion, and when it was compared to thetracked motion of the

external markers it was less strongly correlated. This is due to the fact that the model
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smoothes over some of the small differences between breathing cycles.

Although the correlation of the motion of the external markers with the modeled

motion was not as strong as the correlation of the motion of the external markers with

the tracked motion, the slopes of the regression lines of both correlations were very similar

in the case of patient Jack. To date, studies have only lookedat the correlation between

the motion of an external marker in one dimension, typicallyin the y-direction, and the

motion of an internal marker in two dimensions,y and z. This is because of the setup

of most fluoroscopic imaging systems. In order to compute thecorrelation between the

motion of the external marker and the internal markers theirmotions should be recorded

simultaneously. The easiest way to do this is to record fluoroscopy in such a way that all

of the markers are visible within the frame. Since most fluoroscopic imaging systems can

only be used from one viewpoint at a time, the motion of the internal marker can then only

be observed in two dimensions. It is desirable to have information about the correlation of

the external marker with the motion of the internal marker inthe unobservedx-dimension.

Thus, when we look at the correlation with the model of motionin the x-direction for

patient Jack we could conclude that the slope of the regression line of the data would be

similar to the correlation with the tracked motion in thex-direction if it were available

because the slopes of the regression lines for data in they and z-directions are similar.

We hope to confirm this with tests on additional patients. If it is the case, the modeling

algorithm could provide correlation information about motion in thex-direction that was

previously unavailable.
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The correlation between the motion of the external markers and the 3D estimated

model of the average motion for the patient Nancy, which was 0.45, was much poorer

than for the patient Jack, which was 0.61. This is most likelydue to the problems with

the model outlined in the previous section. The poor correlation further brings out the

fact that improvements in the similarity of the frequency ofthe breathing pattern between

two sequentially obtained image sequences are necessary. In Fig. 4.3 the frequency of the

breathing pattern of the model of motion for patient Nancy does not stay synchronized

with the external marker, whereas for patient Jack the modeland the external marker stay

synchronized. This problem illustrates well that if two patterns of motion slowly become

desynchronized due to a transient phase shift, the correlation will break down.

Because this study was only performed on two patients the results are inconclusive.

However, the results obtained for patient Jack are promising and we are hopeful that tests

on more patient data will show that when the correlation between the motion of the model

and the external marker is reasonably strong, and if the slope of the regression line for

the data is similar to that of the tracked motion, we can recover information about the

motion of the internal marker in thex-direction. Currently, the regression lines are used by

radiation oncologists to predict the motion of the internalmarkers. This is done by using

the observed position of the external marker during treatment as in index into the regression

line to predict the position of the internal marker. If a regression line for the correlation

between the motion of the external marker and the motion of the internal maker in thex-

direction is computed then this would allow us to use the external markers to predict the
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motion of the internal markers in all three dimensions.

The results from patient Nancy confirm that breathing is non-stationary and attention

must be drawn to this. One option to account for the fact that breathing is non-stationary is

to use breath coaching [17]. A more thorough course of actioncould be to use longer pre-

treatment observation times to generate a more reliable model. This could be done by using

the modeling algorithm to generate several different models to model different sections of

the longer breathing pattern. It seems that breathing is regular over short intervals, so if the

modeling algorithm were applied to small windows of time, this would be reasonable. Then

during treatment the external markers could be monitored tochoose which of the models

should be used. This would allow for more flexible and robust modeling during treatment.

Ideally the pre-treatment imaging would expose patients tosubstantially lower amounts of

radiation than the radiation that the patient’s healthy tissue would be exposed to during

treatment, and our goal is to motivate more studies to this effect. If more accurate 3D

motion models could be generated with longer pre-treatmentimaging sessions as proposed

than the extra radiation might be justified in order to benefitpatients during treatment.

5.4 Future Work

There is much future work to be done. We hope that this work will motivate an even closer

partnership between the fields of computer vision and radiation therapy. We would like to

further test and subsequently improve the modeling methods. One method of improvement

would be to no longer rely on the assumption that clips have linear trajectories. This could
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be done by applying the section of the modeling algorithm which finds the maxima and

minima of the breathing cycles to all of the trajectories. Creating a more dynamic model

once longer pre-treatment image sequences are obtained is another key goal. This work

serves to show that if Ozhasoglu and Murphy’s [26] call for longer observation periods is

fulfilled then gating techniques which account for the non-stationary aspects of breathing

will be more easily developed. We hope that we will be able to realize this goal once more

data is obtained.

It is known that tumors deform and that the deformation has the possibility of greatly

altering the radiation both the tumor and the surrounding tissue receive. 4DCT is a new

imaging technology which may be used to address the problemscaused by tumor deforma-

tion. It allows CT scans to be taken at many steps during the respiratory cycle. However, it

exposes the patient to more radiation, is generally more costly, and is not widely available.

It would be beneficial to have a method which allows for a similar type of information

recovery but works with technology which is not as advanced and therefore more prevalent.

Ozhasoglu and Murphy [26] stressed the importance of monitoring the tumor directly, but

this is difficult given current technological limitations.

Radiation oncologists often hand-contour the outline of the tumor in each slice of the

CT scan obtained for treatment planning. The contours provide 3D information about the

shape of the tumor that could be used in conjunction with fluoroscopy to extrapolate 4D

information. Two example slices are shown in Fig. 5.1. The following describes a theory

which we will implement in order to attempt to model the motion of the tumor volume.



58

Figure 5.1: Two slices of a CT scan. The tumor contour is marked yellow. One clip in each
image is visible as a thick white mark outside of the contour as indicated by the red arrow.
The pink cross marks the center of the image.

We propose the following method to model the motion and deformation of the tumor

volume using the internal fiducial markers. First, transform the contours into a thin-plate

spline representation as described by Bookstein [5]. In doing this, make sure that the clips

act as control points on the splines. If the clip does not lie directly on the tumor, then assume

that the clip moves rigidly with respect the closest point onthe contour, and use this point as

a control point. There will be additional control points as well, and they should be chosen

intermittently along each spline between the clip control points. The more of these points

that there are, the less influence each of the clip control points will have on the deformation

of the tumor. The number of non-clip control points will needto be determined with the

help of radiation oncologists. Using the 3D motion of the clips a model of the 3D tumor

motion can be generated. The new clip positions represent the new positions of the control

points along the splines and a transformation and deformation can be calculated.



59

If the only available data is the 3D estimated model of average clip motion an average

model of tumor motion can still be generated. If tracked motion in 3D is available the

model can be estimated directly. Although calculating the transformation and deformation

of a 3D object is computationally expensive, the model couldstill be used with online

tracking as follows. During the pre-treatment phase data can be collected and the model

can be generated offline. A lookup table of possible positions can be created. Then for

any given set of tracked clip positions during treatment instead of generating the model, it

(or the most similar model) can simply be looked up. This method could provide a way to

model the motion of the tumor directly. We hope to implement and test this method when

suitable data becomes available.

An additional potential benefit of this method comes from examining how the clips

move relatively with one another. By combining the models ofthe clips the overall error

of the system could be reduced. This is because the additional information of the relative

motion of the clips will be used. In computing the 3D model of tumor motion, if a clip

seems to be deviating too much from its expected trajectory it could be classified as an

outlier. This could account for mistakes made by the 2D clip tracker and the 3D internal

marker modeling algorithm. We hope to explore this in futurework and to see how the

overall error of the system will be affected.

If further tests show that the modeling of the motion of internal markers in 3D is

successful, using this information in conjunction with theproposed method to model the

motion of the tumor itself we could come even closer to fulfilling Ozhasoglu and Mur-
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phy’s [26] request for direct tumor observation. We look forward to working with radiation

oncologists to realize these goals and help improve the treatment of cancer further.
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