
About this Course

Instructors: R. Jordan Crouser (https://jcrouser.github.io) and
Johanna Brewer (http://deadroxy.com/)

Course Meets: TTh 1:20-2:35PM EST (Section 01) / 2:40- 4:00PM
EST (Section 02)

Location: Ford 241 (https://goo.gl/maps/P73XRbL1ZwAd2bWV8)

Jordan’s O�ce Hours: TBD

Johanna’s O�ce Hours: TBD

TA Hours: Sundays 1-3pm EST, Sundays through Wednesdays 7-
9pm EST in Ford Hall

Course Description:
This course emphasizes computational problem-solving using a typed object-oriented programming
(OOP). Students will learn core computer science principles including: control �ow, functions, classes,
objects, methods, encapsulation and information-hiding, speci�cation, recursion, debugging, unit
testing, version control, using libraries and writing code in multiple �les. Abstract data types and
simple data structures will be used to illustrate concepts of OOP and solve computational problems
through regular programming assignments (in Java and Python).

This course assumes prior programming experience including a basic understanding of branching (if-
statements), iteration (loops), functions and simple data types (integers, strings, lists/arrays).
Prerequisites: CSC 110 or equivalent. Cannot be taken concurrently with CSC 110.

Learning Goals:
Upon successful completion of this course, students will be able to:

Use object-oriented techniques to write programs.
Develop classes and interfaces with overloaded methods.
Use inheritance, polymorphism, and abstract classes.
Design and implement robust, reusable, human-friendly programs (including the development
of unit tests and custom exception classes).

https://jcrouser.github.io/
http://deadroxy.com/
https://goo.gl/maps/P73XRbL1ZwAd2bWV8

Syllabus
Welcome to CSC120: Object-Oriented Programming! Below is some important information about how
the course will run, as well as some speci�c <expectation-setting= details about what we will (and
won’t!) cover.

Course Format
This is a programming-intensive course, designed to help early-stage programmers transition into
developing software engineers. While programming can be a truly interesting, challenging and
rewarding intellectual activity, it is almost impossible to learn it without a lot of practice. This takes
time, especially for debugging a troublesome program that isn’t quite working right yet.

For this reason, the course features a SEMI-FLIPPED CLASSROOM. This means occasionally you’ll be
asked to watch short prerecorded introductions for certain topics and complete some activities before
class, and we’ll spend our time together in class writing code, starting assignments, and applying the
concepts from lecture in real-world contexts. However, this model only works if you commit to the
process… and if this is your �rst experience in a semi-�ipped classroom, it might feel a little
overwhelming. Here are some useful tips to help orient you to this model (adapted from UC Boulder’s
Succeeding in a Flipped Classroom (https://www.colorado.edu/assett/2017/03/21/succeeding-�ipped-
classroom-march-2017-tip):

1. Expect work to be continuous Rather than cramming for large exams that happen after
classes, you are required to keep up with frequent assignments, readings, and videos that are
due before class. One way to set yourself up for success is to get into the habit of completing
your pre-class tasks at the beginning of the semester. Keep up with Discord and Moodle for
updates and assignments.

2. Show up present and prepared Be present in class, physically and mentally, to the best of your
ability. Be ready engage in class discussions and activities. Ask questions to clarify your
understanding of concepts, o�er your own perspective, and try not to be afraid of giving
<wrong= answers – misconceptions and false starts are a normal, healthy part of learning (and we
professors guarantee we’ll make plenty of our own mistakes for you to catch!)

3. Use prerecorded lectures and readings to your advantage While watching prerecorded mini-
lectures may seem like a pain (or just a way for your Prof. to get out of lecturing :-P), they
provide opportunities to learn at your own pace as well as get the perspective of other
instructors (as many of the videos we will use to lay the foundation for this course come from
beyond Smith). If you bene�t from rewatching videos or pausing to try something out on your
own, please do! Many students �nd it helpful to take notes while watching prerecorded lectures,
just like they would in a traditional class.

4. Your education is everyone’s priority If you �nd yourself spending inordinate time debugging
your programs without really making progress, it’s time to reach out – before you fall behind, or it
a�ects your work in other courses. Your professors and TAs are eager to help you �nd strategies

https://www.colorado.edu/assett/2017/03/21/succeeding-flipped-classroom-march-2017-tip

that work for you, and that enable you to reach your goals in the course. In addition to us, the
college has many resources for academic success (https://www.smith.edu/academics/resources-
and-services), all available at no cost.

5. Give honest feedback All teaching is improvable, and so we’ll ask for your feedback often. We
want to know what is going well and what is tough. Being open and constructive will help us to
improve the class, both for future students and for you.

Course Materials
There is no required textbook for this course: all required readings and videos will be made available
through Moodle. However, the following recommended textbook is a good choice for those who �nd
them useful as references. It is available for free online, or you can purchase a hard copy from your
favorite bookstore:

Think Java: How to Think Like a Computer Scientist, 2nd Ed.
(https://greenteapress.com/wp/think-java-2e/) (Allen Downey and Chris May�eld.), O’Reilly, 2019.

If you need help covering the cost of textbooks or other academic supplies (for this or any of your
courses!) please �ll out the Academic Funding Application found at socialnetwork.smith.edu/forms
(socialnetwork.smith.edu/forms).

What We Will Cover
This course builds a strong foundation in object-oriented programming. It is designed for CSC majors
who have completed a �rst course in programming. If this isn’t you, don’t worry! You’re still very
much welcome here. Just be mindful that some self-study before the course starts may be necessary
(see What We WON’T Cover).

Here’s a selection of topics we will cover:

Object-oriented programming in Java
Pointers, references, and indirection
Encapsulation
Inheritance
Composition
Polymorphism
Abstraction

Think Java is a hands-on introduction to computer science and programming used by many universities and high schools around

the world. Its conciseness, emphasis on vocabulary, and informal tone make it particularly appealing for readers with little or no

experience. The book starts with the most basic programming concepts and gradually works its way to advanced object-oriented

techniques. In this fully updated and expanded edition, authors Allen Downey and Chris May�eld introduce programming as a

means for solving interesting problems. Each chapter presents material for one week of a college course and includes exercises

to help you practice what you’ve learned.

https://www.smith.edu/academics/resources-and-services
https://greenteapress.com/wp/think-java-2e/
https://jcrouser.github.io/CSC120/socialnetwork.smith.edu/forms

What We WON’T Cover
This course assumes that you have a solid foundation in computational thinking, either through
successful completion of CSC110, high school curriculum at at AP or IB level, or dedicated self-study.
As such, we expect you to come to class with a solid understanding of the following topics (which we
may recap brie�y to establish common language, but which won’t be covered in substantial detail):

Conditionals, math operators, logical operators
Loops and iteration
Variables and data types
Strings
Lists
Dictionaries
Reading and writing to �le storage
User inputs and print formatting
Functions
Basic concept of an algorithm
Understanding abstract components (e.g., input, output, storage, computation)
Awareness of physical components (e.g., hard drive, RAM, CPU, keyboard)

Pro�ciency with various computer environments and infrastructure will also come in handy (though
we will go over some of this in class together). Check out the following links to supplemental online
courses through LinkedIn Learning if you’d like some additional support, which are available for free
to all members of the Smith community:

Programming Foundations: Fundamentals (https://www.linkedin.com/learning/programming-
foundations-fundamentals-3)

Learning Java (https://www.linkedin.com/learning/learning-java-4/)

Java Code Challenges (https://www.linkedin.com/learning/java-code-challenges)

Communication
All written communication regarding this course will take place via Discord (https://discord.com) (a
cloud-based communication platform that supports text, voice, and video). This includes:

#announcements: Important notices about class times, deadlines, o�ce hours, etc.
#general: Introductions and discussion of course-related material, o�-topic ideas, etc.
#questions: Channel for all non-personal questions. Don’t be shy if you are puzzled, someone else
probably is too!
DMs: Message your professors directly for matters that require individual communication.

Been awhile since you took 111? This 2hr crash course will remind you of the key points. Taught in Python.

Worried about making the leap from python to Java? This course is essentially a do-over of 110, but in Java instead of python.

Partway through the semester and you still feel like you just don’t quite <get= Java? Try these challenges to build your con�dence!

https://www.linkedin.com/learning/programming-foundations-fundamentals-3
https://www.linkedin.com/learning/learning-java-4/
https://www.linkedin.com/learning/java-code-challenges
https://discord.com/

Even if you’re not used to Discord at �rst, it’s not too hard to learn. The advantages of having all
course communications in one place are compelling. Use Discord!

Assessment
There are three forms of assessment in this course:

Weekly programming homework assignments
Two written skill checks (one midterm, one �nal)
One �nal programming project

Homework, Labs, and Lateness Policy
Weekly programming assignments will be introduced in class on Thursdays (sneak peek on
Wednesday nights), and we will work together to get started on them during class time. Final
submissions will be due Wednesdays at 11:59PM EST. Because our lives and learning do not always go
as planned, every student will be able grant themselves extensions on homework assignments. Read
details on how to request an extension here (late-policy.html).

Collaboration and Academic Integrity
Programming is more fun in groups! Students are strongly encouraged to form study groups and to
collaborate in solving the assignments. Please ensure that all work you submit is ultimately the
product of your own understanding rather than anyone else’s. You may consult online or print
references on all assignments and labs. Standard language references showing syntax, usage,
documentation, etc. need not be cited; nor does the course textbook. All other resources must be
cited as described below.

The following information is required for all submitted work:

1. The names of all collaborating students be listed at the top of the submission. If you worked
alone, please state: <I did not collaborate with anyone on this assignment.=

2. A References section, with in-line citations to any external resources you used. Citations should
include page numbers (if a printed resource) or a direct URL (if an online resource). If you did
not use any resources in completing the assignment, please state: <I did not utilize any external
resources in completing this assignment.= If you include a fragment of code from any source, you
should also credit that source with a comment directly in the code.

Use of AI Code-Completion with Attribution
In this course, students are permitted to utilize AI-powered code-completion tools, provided you do so
while adhering to responsible and ethical practices. These tools can provide valuable assistance in
enhancing your programming e�ciency and pro�ciency. You are permitted to incorporate AI code-
completion suggestions into your coding assignments and projects, as long as proper attribution is
given. Generative AI (e.g. ChatGPT or similar) cannot be used for written re�ections in CSC120.

https://jcrouser.github.io/CSC120/late-policy.html

Guidelines for Using AI Code-Completion:

1. Attribution: We’ll treat AI code-completion tools as <collaborators= in this class. Whenever you
get help with your programming tasks, it is crucial to provide clear and transparent attribution.
Include a comment or annotation in your code specifying that certain sections were generated
with the help of an AI code-completion tool.

2. Originality: While AI code-completion can o�er valuable insights and suggestions, it is
important that the �nal code re�ects your understanding of the material. For this reason, you
should avoid copying generated code without understanding what it does; instead, use it as a
reference to enhance your own programming skills.

3. Learning Opportunity: View AI code-completion as a supplementary learning resource. Take
the time to assess the suggestions provided by the tool and compare them to your own coding
decisions. This process can contribute to a deeper understanding of the programming concepts
we cover.

4. Honor Code: Always prioritize academic integrity. Plagiarism, which includes submitting
someone else’s work (including AI-generated content) without proper attribution, is a violation
of our community’s ethical standards and course policy.

5. Discussion and Collaboration: While using AI code-completion, feel free to engage in
discussions with peers and instructors about the generated code and how it aligns with course
concepts. Collaborative learning and constructive feedback can enrich the educational
experience.

6. Diverse Approaches: Keep in mind that there are generally many <right= ways to solve a
programming problem. AI-generated suggestions might present one approach, but exploring
alternative solutions on your own or through discussions is highly encouraged.

7. Human Power: All AI is developed by other humans and trained on data generated by millions
of our peers. Generative AI regurgitates and remixes existing information. Do not be fooled into
thinking it <knows= more than you.

Remember: the primary goal of this course is to enhance your programming skills and understanding
of the subject matter. Utilizing AI code-completion tools with attribution can support this goal, but the
responsibility lies with you to ensure that your work re�ects your own e�orts and comprehension.

Grading
Category Percentage

Homework 60%

Skill Checks 20%

Final Project 15%

Participation and Engagement 5%

Note that the �nal grade is based on our evaluation of your work, and every e�ort will be made to
communicate expectations in advance through detailed rubrics. Although the grade will be largely
based on the percentages shown above, we reserve the right to award extra credit for excellent work
and out-of-the-box thinking. For example, while <Participation and Engagement= will look primarily at
day-to-day engagement, we will also take note of contributions both in and out of class which
demonstrate intellectual curiosity or clear understanding of a topic, as well as comments which help
others to learn a di�cult concept.

Accessibility & Accommodations
We aim to make this course accessible to all and welcome feedback about changes we can make to
meet that goal. If you encounter barriers to participation in this or any other course, please register
with the Disability Services O�ce (https://www.smith.edu/about-smith/disability-services/register) to
request support and accommodations.

Comfy Class Policy
Everyone is welcome to make themselves comfortable in our classroom and asked to be respectful of
one another. When you are communicating, please practice active listening by focusing on
understanding what others are expressing rather than thinking of how you will respond. Additionally,
keep in mind that our wide array of individual backgrounds shape our unique perspectives, so please
respect one another when we have sincere di�erences of opinion.

You may bring beverages or snacks, but please use closed containers to avoid spills and keep messy
foods away from computers. Everyone is free to use concentration accommodations like �dget toys,
knitting, doodling, moving around, or sitting on the �oor; just be mindful your focus does not disrupt
others. Parents and caregivers may bring their babies and children to class whenever necessary.
Learners of all stages are invited to join us.

Acknowledgement
Some of the materials used in this course are derived from lectures, notes, or similar courses taught
at other institutions. Appropriate references will be included on all such material.

https://www.smith.edu/about-smith/disability-services/register

Schedule
The following schedule is subject to change based on the progress of the class. Please check back
frequently!

Date Day Topic Assignment Out

9/7 Thur. Introduction A1: Real-World Objects

9/12 Tues. Getting started with VSCode + git

9/14 Thur. Object-Oriented Thinking A2: Object-i�cation

9/19 Tues. Software Engineering Skill: Translating to/from
Pseudocode

9/21 Thur. Introduction to Java A3: Our First Java Class

9/26 Tues. Encapsulation in Java

9/28 Thur. Memory Models A4: Trace the Execution

10/3 Tues. More on Pointers, References, and Indirection

10/5 Thur. Association pt. 1: Aggregation Assignment Rewind: Revise & Resubmit

10/10 Tues. No Class - Fall Break

10/12 Thur. Association pt. 2: Composition A5: Assembling the Pieces

10/17 Tues. Inheritance

10/19 Thur. Exploring Inheritance in Java Classes A6: Use What Your Parent (Class) Gave You

10/24 Tues. Mid-semester Recap / AMA

10/26 Thur. Midterm Skill Check (No Class)

10/31 Tues. Software Engineering Skill: Unit Testing Assignment Rewind: Edge Cases & Testing

11/2 Thur. No Class - Cromwell Day

11/7 Tues. Polymorphism pt. 1: Method Overriding A7: Not Your Parent’s Method

11/9 Thur. Polymorphism pt. 2: Method Overloading

11/14 Tues. Abstraction pt. 1: Interfaces and Generic Types A8: Promises, Promises…

11/16 Thur. Abstraction pt. 2: Abstract Classes

11/21 Tues. Final Project Workshop 1 FP1: Project Proposal

11/23 Thur. No Class - Thanksgiving Break

11/28 Tues. Software Engineering Skill: Architecture Diagrams FP2: Draft Codebase, Architecture Diagram

11/30 Thur. Real World Applications pt. 1

12/5 Tues. Final Project: Code Review FP3: Beta Codebase, Revised Architecture
Diagram

Date Day Topic Assignment Out

12/7 Thur. Real World Applications pt. 2

12/12 Tues. Final Project Workshop 2

12/14 Thur. Final Project Presentations

Late Policy
Programmers develop their skills through constant practice. CSC120 features weekly programming
assignments, which build from one week to the next, and each assignment is designed to take a full
week of work. Delaying the completion of an assignment will put you at a disadvantage going into the
next one. Nevertheless, sometimes a little �exibility makes a huge di�erence, so students are
empowered to give themselves extensions when it would aid their ability to master the material. Only
extensions which precisely adhere to the guidelines below will be considered valid. Late assignments
without a valid extension will receive no credit.

Extension Guidelines
Extensions must be requested before the work is due, and they will not be given retroactively.
Students may only grant themselves extensions for homework assignments; extensions do not apply
to lab work, skill checks, or the �nal project. When pair programming, both students in the pair must
each submit their own request for the same extension. Work turned in under an extension will receive
the lowest priority for grading, and in some cases may not be returned until the end of the semester.

Requesting an Extension
Prior to the original deadline for the assignment, submit a �le called extension.txt on Gradescope
that contains the following:

Your name (and partner’s name if you are pair programming)
Assignment number and original due date
Duration of extension and new due date
Review of any prior extension requests

For example:

 Jordan Crouser & Johanna Brewer
 HW9 originally due 10/1/2021
 2 day extension, now due 10/3/2021
 Previous extensions: HW2 (1 day), HW7 (2 days)

Be sure that you do not submit any other �les with your extension request. You can bring your code
in progress to o�ce or TA hours if you need. Do not turn in work that you do not want to be graded.

Once you’ve �nished, and before your new deadline expires, submit all your �les for the assignment
as usual.

Changing an Extension
If you submit an extension.txt before the deadline and then decide you do not need it, just turn
your code as usual and include an extension.txt �le without any text. If you realize that you need
even more time, you may grant yourself an additional extension following the same procedure again.
However, repeated resets are unlikely to enhance your learning, so be mindful about how much time
you add to your clock!

